mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-18 12:20:08 +08:00
129 lines
6.1 KiB
Python
129 lines
6.1 KiB
Python
|
import torch
|
||
|
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
||
|
|
||
|
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
||
|
|
||
|
original_torch_bmm = torch.bmm
|
||
|
def torch_bmm(input, mat2, *, out=None):
|
||
|
if input.dtype != mat2.dtype:
|
||
|
mat2 = mat2.to(input.dtype)
|
||
|
|
||
|
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
||
|
batch_size_attention, input_tokens, mat2_shape = input.shape[0], input.shape[1], mat2.shape[2]
|
||
|
block_multiply = 2.4 if input.dtype == torch.float32 else 1.2
|
||
|
block_size = (batch_size_attention * input_tokens * mat2_shape) / 1024 * block_multiply #MB
|
||
|
split_slice_size = batch_size_attention
|
||
|
if block_size >= 4000:
|
||
|
do_split = True
|
||
|
#Find something divisible with the input_tokens
|
||
|
while ((split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply) > 4000:
|
||
|
split_slice_size = split_slice_size // 2
|
||
|
if split_slice_size <= 1:
|
||
|
split_slice_size = 1
|
||
|
break
|
||
|
else:
|
||
|
do_split = False
|
||
|
|
||
|
split_block_size = (split_slice_size * input_tokens * mat2_shape) / 1024 * block_multiply #MB
|
||
|
split_2_slice_size = input_tokens
|
||
|
if split_block_size >= 4000:
|
||
|
do_split_2 = True
|
||
|
#Find something divisible with the input_tokens
|
||
|
while ((split_slice_size * split_2_slice_size * mat2_shape) / 1024 * block_multiply) > 4000:
|
||
|
split_2_slice_size = split_2_slice_size // 2
|
||
|
if split_2_slice_size <= 1:
|
||
|
split_2_slice_size = 1
|
||
|
break
|
||
|
else:
|
||
|
do_split_2 = False
|
||
|
|
||
|
if do_split:
|
||
|
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
|
||
|
for i in range(batch_size_attention // split_slice_size):
|
||
|
start_idx = i * split_slice_size
|
||
|
end_idx = (i + 1) * split_slice_size
|
||
|
if do_split_2:
|
||
|
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
||
|
start_idx_2 = i2 * split_2_slice_size
|
||
|
end_idx_2 = (i2 + 1) * split_2_slice_size
|
||
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
|
||
|
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
||
|
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
||
|
out=out
|
||
|
)
|
||
|
else:
|
||
|
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
||
|
input[start_idx:end_idx],
|
||
|
mat2[start_idx:end_idx],
|
||
|
out=out
|
||
|
)
|
||
|
else:
|
||
|
return original_torch_bmm(input, mat2, out=out)
|
||
|
return hidden_states
|
||
|
|
||
|
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
||
|
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
|
||
|
#ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
||
|
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
|
||
|
block_multiply = 2.4 if query.dtype == torch.float32 else 1.2
|
||
|
block_size = (shape_one * batch_size_attention * query_tokens * shape_four) / 1024 * block_multiply #MB
|
||
|
split_slice_size = batch_size_attention
|
||
|
if block_size >= 4000:
|
||
|
do_split = True
|
||
|
#Find something divisible with the shape_one
|
||
|
while ((shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply) > 4000:
|
||
|
split_slice_size = split_slice_size // 2
|
||
|
if split_slice_size <= 1:
|
||
|
split_slice_size = 1
|
||
|
break
|
||
|
else:
|
||
|
do_split = False
|
||
|
|
||
|
split_block_size = (shape_one * split_slice_size * query_tokens * shape_four) / 1024 * block_multiply #MB
|
||
|
split_2_slice_size = query_tokens
|
||
|
if split_block_size >= 4000:
|
||
|
do_split_2 = True
|
||
|
#Find something divisible with the batch_size_attention
|
||
|
while ((shape_one * split_slice_size * split_2_slice_size * shape_four) / 1024 * block_multiply) > 4000:
|
||
|
split_2_slice_size = split_2_slice_size // 2
|
||
|
if split_2_slice_size <= 1:
|
||
|
split_2_slice_size = 1
|
||
|
break
|
||
|
else:
|
||
|
do_split_2 = False
|
||
|
|
||
|
if do_split:
|
||
|
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
|
||
|
for i in range(batch_size_attention // split_slice_size):
|
||
|
start_idx = i * split_slice_size
|
||
|
end_idx = (i + 1) * split_slice_size
|
||
|
if do_split_2:
|
||
|
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
||
|
start_idx_2 = i2 * split_2_slice_size
|
||
|
end_idx_2 = (i2 + 1) * split_2_slice_size
|
||
|
hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
|
||
|
query[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
||
|
key[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
||
|
value[:, start_idx:end_idx, start_idx_2:end_idx_2],
|
||
|
attn_mask=attn_mask[:, start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
|
||
|
dropout_p=dropout_p, is_causal=is_causal
|
||
|
)
|
||
|
else:
|
||
|
hidden_states[:, start_idx:end_idx] = original_scaled_dot_product_attention(
|
||
|
query[:, start_idx:end_idx],
|
||
|
key[:, start_idx:end_idx],
|
||
|
value[:, start_idx:end_idx],
|
||
|
attn_mask=attn_mask[:, start_idx:end_idx] if attn_mask is not None else attn_mask,
|
||
|
dropout_p=dropout_p, is_causal=is_causal
|
||
|
)
|
||
|
else:
|
||
|
return original_scaled_dot_product_attention(
|
||
|
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
|
||
|
)
|
||
|
return hidden_states
|
||
|
|
||
|
def attention_init():
|
||
|
#ARC GPUs can't allocate more than 4GB to a single block:
|
||
|
torch.bmm = torch_bmm
|
||
|
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|