mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-18 04:10:08 +08:00
197 lines
11 KiB
Python
197 lines
11 KiB
Python
|
import contextlib
|
||
|
import importlib
|
||
|
import torch
|
||
|
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
||
|
|
||
|
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
|
||
|
|
||
|
class CondFunc: # pylint: disable=missing-class-docstring
|
||
|
def __new__(cls, orig_func, sub_func, cond_func):
|
||
|
self = super(CondFunc, cls).__new__(cls)
|
||
|
if isinstance(orig_func, str):
|
||
|
func_path = orig_func.split('.')
|
||
|
for i in range(len(func_path)-1, -1, -1):
|
||
|
try:
|
||
|
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
|
||
|
break
|
||
|
except ImportError:
|
||
|
pass
|
||
|
for attr_name in func_path[i:-1]:
|
||
|
resolved_obj = getattr(resolved_obj, attr_name)
|
||
|
orig_func = getattr(resolved_obj, func_path[-1])
|
||
|
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
|
||
|
self.__init__(orig_func, sub_func, cond_func)
|
||
|
return lambda *args, **kwargs: self(*args, **kwargs)
|
||
|
def __init__(self, orig_func, sub_func, cond_func):
|
||
|
self.__orig_func = orig_func
|
||
|
self.__sub_func = sub_func
|
||
|
self.__cond_func = cond_func
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
|
||
|
return self.__sub_func(self.__orig_func, *args, **kwargs)
|
||
|
else:
|
||
|
return self.__orig_func(*args, **kwargs)
|
||
|
|
||
|
_utils = torch.utils.data._utils
|
||
|
def _shutdown_workers(self):
|
||
|
if torch.utils.data._utils is None or torch.utils.data._utils.python_exit_status is True or torch.utils.data._utils.python_exit_status is None:
|
||
|
return
|
||
|
if hasattr(self, "_shutdown") and not self._shutdown:
|
||
|
self._shutdown = True
|
||
|
try:
|
||
|
if hasattr(self, '_pin_memory_thread'):
|
||
|
self._pin_memory_thread_done_event.set()
|
||
|
self._worker_result_queue.put((None, None))
|
||
|
self._pin_memory_thread.join()
|
||
|
self._worker_result_queue.cancel_join_thread()
|
||
|
self._worker_result_queue.close()
|
||
|
self._workers_done_event.set()
|
||
|
for worker_id in range(len(self._workers)):
|
||
|
if self._persistent_workers or self._workers_status[worker_id]:
|
||
|
self._mark_worker_as_unavailable(worker_id, shutdown=True)
|
||
|
for w in self._workers: # pylint: disable=invalid-name
|
||
|
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
|
||
|
for q in self._index_queues: # pylint: disable=invalid-name
|
||
|
q.cancel_join_thread()
|
||
|
q.close()
|
||
|
finally:
|
||
|
if self._worker_pids_set:
|
||
|
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
|
||
|
self._worker_pids_set = False
|
||
|
for w in self._workers: # pylint: disable=invalid-name
|
||
|
if w.is_alive():
|
||
|
w.terminate()
|
||
|
|
||
|
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
|
||
|
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
|
||
|
if isinstance(device_ids, list) and len(device_ids) > 1:
|
||
|
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
|
||
|
return module.to("xpu")
|
||
|
|
||
|
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
||
|
return contextlib.nullcontext()
|
||
|
|
||
|
def check_device(device):
|
||
|
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
|
||
|
|
||
|
def return_xpu(device):
|
||
|
return f"xpu:{device[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
|
||
|
|
||
|
def ipex_no_cuda(orig_func, *args, **kwargs):
|
||
|
torch.cuda.is_available = lambda: False
|
||
|
orig_func(*args, **kwargs)
|
||
|
torch.cuda.is_available = torch.xpu.is_available
|
||
|
|
||
|
original_autocast = torch.autocast
|
||
|
def ipex_autocast(*args, **kwargs):
|
||
|
if len(args) > 0 and args[0] == "cuda":
|
||
|
return original_autocast("xpu", *args[1:], **kwargs)
|
||
|
else:
|
||
|
return original_autocast(*args, **kwargs)
|
||
|
|
||
|
original_torch_cat = torch.cat
|
||
|
def torch_cat(tensor, *args, **kwargs):
|
||
|
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
|
||
|
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
|
||
|
else:
|
||
|
return original_torch_cat(tensor, *args, **kwargs)
|
||
|
|
||
|
original_interpolate = torch.nn.functional.interpolate
|
||
|
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
|
||
|
if antialias or align_corners is not None:
|
||
|
return_device = tensor.device
|
||
|
return_dtype = tensor.dtype
|
||
|
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
|
||
|
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
|
||
|
else:
|
||
|
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
|
||
|
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
|
||
|
|
||
|
original_linalg_solve = torch.linalg.solve
|
||
|
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
|
||
|
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
|
||
|
return_device = A.device
|
||
|
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device)
|
||
|
else:
|
||
|
return original_linalg_solve(A, B, *args, **kwargs)
|
||
|
|
||
|
def ipex_hijacks():
|
||
|
CondFunc('torch.Tensor.to',
|
||
|
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
|
||
|
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
|
||
|
CondFunc('torch.Tensor.cuda',
|
||
|
lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs),
|
||
|
lambda orig_func, self, device=None, *args, **kwargs: check_device(device))
|
||
|
CondFunc('torch.empty',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
CondFunc('torch.load',
|
||
|
lambda orig_func, *args, map_location=None, **kwargs: orig_func(*args, return_xpu(map_location), **kwargs),
|
||
|
lambda orig_func, *args, map_location=None, **kwargs: map_location is None or check_device(map_location))
|
||
|
CondFunc('torch.randn',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
CondFunc('torch.ones',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
CondFunc('torch.zeros',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
CondFunc('torch.tensor',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
CondFunc('torch.linspace',
|
||
|
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
|
||
|
lambda orig_func, *args, device=None, **kwargs: check_device(device))
|
||
|
|
||
|
CondFunc('torch.Generator',
|
||
|
lambda orig_func, device=None: torch.xpu.Generator(device),
|
||
|
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
|
||
|
|
||
|
CondFunc('torch.batch_norm',
|
||
|
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
|
||
|
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
|
||
|
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
|
||
|
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
|
||
|
CondFunc('torch.instance_norm',
|
||
|
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
|
||
|
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
|
||
|
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
|
||
|
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
|
||
|
|
||
|
#Functions with dtype errors:
|
||
|
CondFunc('torch.nn.modules.GroupNorm.forward',
|
||
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
||
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
||
|
CondFunc('torch.nn.modules.linear.Linear.forward',
|
||
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
||
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
||
|
CondFunc('torch.nn.modules.conv.Conv2d.forward',
|
||
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
||
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
||
|
CondFunc('torch.nn.functional.layer_norm',
|
||
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||
|
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
||
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||
|
weight is not None and input.dtype != weight.data.dtype)
|
||
|
|
||
|
#Diffusers Float64 (ARC GPUs doesn't support double or Float64):
|
||
|
if not torch.xpu.has_fp64_dtype():
|
||
|
CondFunc('torch.from_numpy',
|
||
|
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')),
|
||
|
lambda orig_func, ndarray: ndarray.dtype == float)
|
||
|
|
||
|
#Broken functions when torch.cuda.is_available is True:
|
||
|
CondFunc('torch.utils.data.dataloader._BaseDataLoaderIter.__init__',
|
||
|
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
|
||
|
lambda orig_func, *args, **kwargs: True)
|
||
|
|
||
|
#Functions that make compile mad with CondFunc:
|
||
|
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
|
||
|
torch.nn.DataParallel = DummyDataParallel
|
||
|
torch.autocast = ipex_autocast
|
||
|
torch.cat = torch_cat
|
||
|
torch.linalg.solve = linalg_solve
|
||
|
torch.nn.functional.interpolate = interpolate
|
||
|
torch.backends.cuda.sdp_kernel = return_null_context
|