Retrieval-based-Voice-Conve.../api.py

403 lines
16 KiB
Python
Raw Normal View History

import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
from tools.torchgate import TorchGate
import tools.rvc_for_realtime as rvc_for_realtime
from configs.config import Config
load_dotenv()
os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
now_dir = os.getcwd()
sys.path.append(now_dir)
stream_latency = -1
app = FastAPI()
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
self.index_path: str = ""
self.pitch: int = 0
self.samplerate: int = 40000
self.block_time: float = 1.0 # s
self.buffer_num: int = 1
self.threhold: int = -60
self.crossfade_time: float = 0.05
self.extra_time: float = 2.5
self.I_noise_reduce = False
self.O_noise_reduce = False
self.rms_mix_rate = 0.0
self.index_rate = 0.3
self.f0method = "rmvpe"
self.sg_input_device = ""
self.sg_output_device = ""
class ConfigData(BaseModel):
pth_path: str
index_path: str
sg_input_device: str
sg_output_device: str
threhold: int = -60
pitch: int = 0
index_rate: float = 0.3
rms_mix_rate: float = 0.0
block_time: float = 0.25
crossfade_length: float = 0.05
extra_time: float = 2.5
n_cpu: int = 4
I_noise_reduce: bool = False
O_noise_reduce: bool = False
class AudioAPI:
def __init__(self) -> None:
self.gui_config = GUIConfig()
self.config = Config()
self.flag_vc = False
self.function = "vc"
self.delay_time = 0
def load(self):
input_devices, output_devices, _, _ = self.get_devices()
try:
with open("configs/config.json", "r") as j:
data = json.load(j)
data["rmvpe"] = True # Ensure rmvpe is the only f0method
if data["sg_input_device"] not in input_devices:
data["sg_input_device"] = input_devices[sd.default.device[0]]
if data["sg_output_device"] not in output_devices:
data["sg_output_device"] = output_devices[sd.default.device[1]]
except:
with open("configs/config.json", "w") as j:
data = {
"pth_path": " ",
"index_path": " ",
"sg_input_device": input_devices[sd.default.device[0]],
"sg_output_device": output_devices[sd.default.device[1]],
"threhold": "-60",
"pitch": "0",
"index_rate": "0",
"rms_mix_rate": "0",
"block_time": "0.25",
"crossfade_length": "0.05",
"extra_time": "2.5",
"f0method": "rmvpe",
"use_jit": False,
}
data["rmvpe"] = True # Ensure rmvpe is the only f0method
return data
def set_values(self, values):
if len(values.pth_path.strip()) == 0:
raise HTTPException(status_code=400, detail="Please select a .pth file")
if len(values.index_path.strip()) == 0:
raise HTTPException(status_code=400, detail="Please select an index file")
pattern = re.compile("[^\x00-\x7F]+")
if pattern.findall(values.pth_path):
raise HTTPException(status_code=400, detail=".pth file path should not contain non-ASCII characters")
if pattern.findall(values.index_path):
raise HTTPException(status_code=400, detail="Index file path should not contain non-ASCII characters")
self.set_devices(values.sg_input_device, values.sg_output_device)
self.config.use_jit = False
self.gui_config.pth_path = values.pth_path
self.gui_config.index_path = values.index_path
self.gui_config.threhold = values.threhold
self.gui_config.pitch = values.pitch
self.gui_config.block_time = values.block_time
self.gui_config.crossfade_time = values.crossfade_length
self.gui_config.extra_time = values.extra_time
self.gui_config.I_noise_reduce = values.I_noise_reduce
self.gui_config.O_noise_reduce = values.O_noise_reduce
self.gui_config.rms_mix_rate = values.rms_mix_rate
self.gui_config.index_rate = values.index_rate
self.gui_config.n_cpu = values.n_cpu
self.gui_config.f0method = "rmvpe"
return True
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.rvc = rvc_for_realtime.RVC(
self.gui_config.pitch,
self.gui_config.pth_path,
self.gui_config.index_path,
self.gui_config.index_rate,
0,
0,
0,
self.config,
self.rvc if hasattr(self, "rvc") else None,
)
if not hasattr(self.rvc, 'tgt_sr'):
self.rvc.tgt_sr = 44100
self.gui_config.samplerate = self.rvc.tgt_sr
self.zc = self.rvc.tgt_sr // 100
self.block_frame = (
int(
np.round(
self.gui_config.block_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (
int(
np.round(
self.gui_config.crossfade_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.sola_search_frame = self.zc
self.extra_frame = (
int(
np.round(
self.gui_config.extra_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.input_wav = torch.zeros(
self.extra_frame + self.crossfade_frame + self.sola_search_frame + self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_res = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.pitch = np.zeros(self.input_wav.shape[0] // self.zc, dtype="int32")
self.pitchf = np.zeros(self.input_wav.shape[0] // self.zc, dtype="float64")
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.config.device, dtype=torch.float32)
self.nr_buffer = self.sola_buffer.clone()
self.output_buffer = self.input_wav.clone()
self.res_buffer = torch.zeros(2 * self.zc, device=self.config.device, dtype=torch.float32)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window = (
torch.sin(0.5 * np.pi * torch.linspace(0.0, 1.0, steps=self.crossfade_frame, device=self.config.device, dtype=torch.float32)) ** 2
)
self.fade_out_window = 1 - self.fade_in_window
self.resampler = tat.Resample(
orig_freq=self.gui_config.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
self.tg = TorchGate(
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
channels = 1 if sys.platform == "darwin" else 2
with sd.Stream(
channels=channels,
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.gui_config.samplerate,
dtype="float32",
) as stream:
global stream_latency
stream_latency = stream.latency[-1]
while self.flag_vc:
time.sleep(self.gui_config.block_time)
print("Audio block passed.")
print("ENDing VC")
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.gui_config.threhold > -60:
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)
db_threhold = (librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(self.config.device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
if self.gui_config.I_noise_reduce and self.function == "vc":
input_wav = self.input_wav[-self.crossfade_frame - self.block_frame - 2 * self.zc :]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2 * self.zc :]
input_wav[: self.crossfade_frame] *= self.fade_in_window
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
self.nr_buffer[:] = input_wav[-self.crossfade_frame :]
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
self.res_buffer[:] = input_wav[-2 * self.zc :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(input_wav)[160:]
else:
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(self.input_wav[-self.block_frame - 2 * self.zc :])[160:]
if self.function == "vc":
f0_extractor_frame = self.block_frame_16k + 800
if self.gui_config.f0method == "rmvpe":
f0_extractor_frame = (5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160)
infer_wav = self.rvc.infer(
self.input_wav_res,
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
self.block_frame_16k,
self.valid_rate,
self.pitch,
self.pitchf,
self.gui_config.f0method,
)
infer_wav = infer_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :]
else:
infer_wav = self.input_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].clone()
if (self.gui_config.O_noise_reduce and self.function == "vc") or (self.gui_config.I_noise_reduce and self.function == "im"):
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
rms1 = librosa.feature.rms(y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :].cpu().numpy(), frame_length=640, hop_length=160)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = librosa.feature.rms(y=infer_wav[:].cpu().numpy(), frame_length=4 * self.zc, hop_length=self.zc)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate))
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(F.conv1d(conv_input**2, torch.ones(1, 1, self.crossfade_frame, device=self.config.device)) + 1e-8)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
print("sola_offset = %d" % int(sola_offset))
infer_wav = infer_wav[sola_offset : sola_offset + self.block_frame + self.crossfade_frame]
infer_wav[: self.crossfade_frame] *= self.fade_in_window
infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame :]
if sys.platform == "darwin":
outdata[:] = infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
else:
outdata[:] = infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
print("Infer time: %.2f" % total_time)
def get_devices(self, update: bool = True):
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
print("Input device: %s:%s" % (str(sd.default.device[0]), input_device))
print("Output device: %s:%s" % (str(sd.default.device[1]), output_device))
audio_api = AudioAPI()
@app.get("/inputDevices")
def get_input_devices():
input_devices, _, _, _ = audio_api.get_devices()
return input_devices
@app.get("/outputDevices")
def get_output_devices():
_, output_devices, _, _ = audio_api.get_devices()
return output_devices
@app.post("/config")
def configure_audio(config_data: ConfigData):
try:
if audio_api.set_values(config_data):
settings = config_data.dict()
settings["use_jit"] = False
settings["f0method"] = "rmvpe"
with open("configs/config.json", "w") as j:
json.dump(settings, j)
return {"message": "Configuration set successfully"}
except Exception as e:
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")
@app.post("/start")
def start_conversion():
try:
if not audio_api.flag_vc:
audio_api.start_vc()
return {"message": "Audio conversion started"}
else:
raise HTTPException(status_code=400, detail="Audio conversion already running")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to start conversion: {e}")
@app.post("/stop")
def stop_conversion():
try:
if audio_api.flag_vc:
audio_api.flag_vc = False
global stream_latency
stream_latency = -1
return {"message": "Audio conversion stopped"}
else:
raise HTTPException(status_code=400, detail="Audio conversion not running")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to stop conversion: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8043)