Retrieval-based-Voice-Conve.../MDXNet.py

286 lines
8.9 KiB
Python
Raw Normal View History

2023-05-28 22:58:33 +08:00
import soundfile as sf
2023-06-24 15:26:14 +08:00
import torch, pdb, os, warnings, librosa
2023-05-28 22:58:33 +08:00
import numpy as np
from tqdm import tqdm
import torch
dim_c = 4
class Conv_TDF_net_trim:
def __init__(
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
):
2023-05-28 22:58:33 +08:00
super(Conv_TDF_net_trim, self).__init__()
self.dim_f = dim_f
self.dim_t = 2**dim_t
2023-05-28 22:58:33 +08:00
self.n_fft = n_fft
self.hop = hop
self.n_bins = self.n_fft // 2 + 1
self.chunk_size = hop * (self.dim_t - 1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
device
)
2023-05-28 22:58:33 +08:00
self.target_name = target_name
self.blender = "blender" in model_name
2023-05-28 22:58:33 +08:00
out_c = dim_c * 4 if target_name == "*" else dim_c
self.freq_pad = torch.zeros(
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
).to(device)
2023-05-28 22:58:33 +08:00
self.n = L // 2
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
x = torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop,
window=self.window,
center=True,
return_complex=True,
)
2023-05-28 22:58:33 +08:00
x = torch.view_as_real(x)
x = x.permute([0, 3, 1, 2])
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
[-1, dim_c, self.n_bins, self.dim_t]
)
return x[:, :, : self.dim_f]
2023-05-28 22:58:33 +08:00
def istft(self, x, freq_pad=None):
freq_pad = (
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
if freq_pad is None
else freq_pad
)
2023-05-28 22:58:33 +08:00
x = torch.cat([x, freq_pad], -2)
c = 4 * 2 if self.target_name == "*" else 2
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
[-1, 2, self.n_bins, self.dim_t]
)
2023-05-28 22:58:33 +08:00
x = x.permute([0, 2, 3, 1])
x = x.contiguous()
x = torch.view_as_complex(x)
x = torch.istft(
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
)
2023-05-28 22:58:33 +08:00
return x.reshape([-1, c, self.chunk_size])
2023-05-28 22:58:33 +08:00
def get_models(device, dim_f, dim_t, n_fft):
return Conv_TDF_net_trim(
device=device,
model_name="Conv-TDF",
target_name="vocals",
2023-05-28 22:58:33 +08:00
L=11,
dim_f=dim_f,
dim_t=dim_t,
n_fft=n_fft,
2023-05-28 22:58:33 +08:00
)
2023-05-28 22:58:33 +08:00
warnings.filterwarnings("ignore")
2023-08-13 01:05:58 +08:00
import sys
2023-08-13 01:05:58 +08:00
now_dir = os.getcwd()
sys.path.append(now_dir)
from config import Config
cpu = torch.device("cpu")
device = Config().device
2023-08-13 01:05:58 +08:00
# if torch.cuda.is_available():
# device = torch.device("cuda:0")
# elif torch.backends.mps.is_available():
# device = torch.device("mps")
# else:
# device = torch.device("cpu")
2023-05-28 22:58:33 +08:00
class Predictor:
def __init__(self, args):
self.args = args
self.model_ = get_models(
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
)
2023-08-13 01:05:58 +08:00
import onnxruntime as ort
2023-08-13 01:05:58 +08:00
print(ort.get_available_providers())
self.model = ort.InferenceSession(
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
providers=[
"CUDAExecutionProvider",
"DmlExecutionProvider",
"CPUExecutionProvider",
],
)
print("onnx load done")
2023-05-28 22:58:33 +08:00
def demix(self, mix):
samples = mix.shape[-1]
margin = self.args.margin
chunk_size = self.args.chunks * 44100
assert not margin == 0, "margin cannot be zero!"
2023-05-28 22:58:33 +08:00
if margin > chunk_size:
margin = chunk_size
segmented_mix = {}
2023-05-28 22:58:33 +08:00
if self.args.chunks == 0 or samples < chunk_size:
chunk_size = samples
2023-05-28 22:58:33 +08:00
counter = -1
for skip in range(0, samples, chunk_size):
counter += 1
2023-05-28 22:58:33 +08:00
s_margin = 0 if counter == 0 else margin
end = min(skip + chunk_size + margin, samples)
2023-05-28 22:58:33 +08:00
start = skip - s_margin
2023-05-28 22:58:33 +08:00
segmented_mix[skip] = mix[:, start:end].copy()
2023-05-28 22:58:33 +08:00
if end == samples:
break
sources = self.demix_base(segmented_mix, margin_size=margin)
"""
2023-05-28 22:58:33 +08:00
mix:(2,big_sample)
segmented_mix:offset->(2,small_sample)
sources:(1,2,big_sample)
"""
2023-05-28 22:58:33 +08:00
return sources
2023-05-28 22:58:33 +08:00
def demix_base(self, mixes, margin_size):
chunked_sources = []
progress_bar = tqdm(total=len(mixes))
progress_bar.set_description("Processing")
for mix in mixes:
cmix = mixes[mix]
sources = []
n_sample = cmix.shape[1]
model = self.model_
trim = model.n_fft // 2
gen_size = model.chunk_size - 2 * trim
pad = gen_size - n_sample % gen_size
mix_p = np.concatenate(
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
)
2023-05-28 22:58:33 +08:00
mix_waves = []
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i : i + model.chunk_size])
2023-05-28 22:58:33 +08:00
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.model
spek = model.stft(mix_waves)
if self.args.denoise:
spec_pred = (
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
)
2023-05-28 22:58:33 +08:00
tar_waves = model.istft(torch.tensor(spec_pred))
else:
tar_waves = model.istft(
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
)
tar_signal = (
tar_waves[:, :, trim:-trim]
.transpose(0, 1)
.reshape(2, -1)
.numpy()[:, :-pad]
)
2023-05-28 22:58:33 +08:00
start = 0 if mix == 0 else margin_size
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
if margin_size == 0:
end = None
sources.append(tar_signal[:, start:end])
2023-05-28 22:58:33 +08:00
progress_bar.update(1)
2023-05-28 22:58:33 +08:00
chunked_sources.append(sources)
_sources = np.concatenate(chunked_sources, axis=-1)
# del self.model
progress_bar.close()
return _sources
def prediction(self, m, vocal_root, others_root, format):
os.makedirs(vocal_root, exist_ok=True)
os.makedirs(others_root, exist_ok=True)
2023-05-28 22:58:33 +08:00
basename = os.path.basename(m)
mix, rate = librosa.load(m, mono=False, sr=44100)
if mix.ndim == 1:
mix = np.asfortranarray([mix, mix])
2023-05-28 22:58:33 +08:00
mix = mix.T
sources = self.demix(mix.T)
opt = sources[0].T
if format in ["wav", "flac"]:
sf.write(
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
)
2023-06-06 22:32:10 +08:00
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
else:
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
path_other = "%s/%s_others.wav" % (others_root, basename)
2023-06-06 22:32:10 +08:00
sf.write(path_vocal, mix - opt, rate)
sf.write(path_other, opt, rate)
if os.path.exists(path_vocal):
2023-06-06 22:32:10 +08:00
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path_vocal, path_vocal[:-4] + ".%s" % format)
)
if os.path.exists(path_other):
2023-06-06 22:32:10 +08:00
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path_other, path_other[:-4] + ".%s" % format)
)
class MDXNetDereverb:
def __init__(self, chunks):
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy"
self.shifts = 10 #'Predict with randomised equivariant stabilisation'
self.mixing = "min_mag" # ['default','min_mag','max_mag']
self.chunks = chunks
self.margin = 44100
self.dim_t = 9
self.dim_f = 3072
self.n_fft = 6144
self.denoise = True
self.pred = Predictor(self)
def _path_audio_(self, input, vocal_root, others_root, format):
self.pred.prediction(input, vocal_root, others_root, format)
if __name__ == "__main__":
dereverb = MDXNetDereverb(15)
2023-05-28 22:58:33 +08:00
from time import time as ttime
t0 = ttime()
2023-05-28 22:58:33 +08:00
dereverb._path_audio_(
"雪雪伴奏对消HP5.wav",
"vocal",
"others",
)
t1 = ttime()
print(t1 - t0)
2023-05-28 22:58:33 +08:00
"""
2023-05-28 22:58:33 +08:00
runtime\python.exe MDXNet.py
6G:
15/9:0.8G->6.8G
14:0.8G->6.5G
25:
half15:0.7G->6.6G,22.69s
fp32-15:0.7G->6.6G,20.85s
"""