Retrieval-based-Voice-Conve.../infer_batch_rvc.py

217 lines
7.1 KiB
Python
Raw Normal View History

"""
v1
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33
v2
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33
"""
import os, sys, pdb, torch
now_dir = os.getcwd()
sys.path.append(now_dir)
import sys
import torch
import tqdm as tq
from multiprocessing import cpu_count
class Config:
def __init__(self, device, is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16系/10系显卡和P40强制单精度")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
self.is_half = True
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max
f0up_key = sys.argv[1]
input_path = sys.argv[2]
index_path = sys.argv[3]
f0method = sys.argv[4] # harvest or pm
opt_path = sys.argv[5]
model_path = sys.argv[6]
index_rate = float(sys.argv[7])
device = sys.argv[8]
2023-06-28 13:54:44 +08:00
is_half = sys.argv[9].lower() != "false"
filter_radius = int(sys.argv[10])
resample_sr = int(sys.argv[11])
rms_mix_rate = float(sys.argv[12])
protect = float(sys.argv[13])
print(sys.argv)
config = Config(device, is_half)
now_dir = os.getcwd()
sys.path.append(now_dir)
from vc_infer_pipeline import VC
2023-06-24 15:26:14 +08:00
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from lib.audio import load_audio
from fairseq import checkpoint_utils
from scipy.io import wavfile
hubert_model = None
def load_hubert(hubert_model_path="hubert_base.pt"):
global hubert_model
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[hubert_model_path],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
def vc_single(sid, input_audio, f0_up_key, f0_file, f0_method, file_index, index_rate):
global tgt_sr, net_g, vc, hubert_model, version
if input_audio is None:
return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
audio = load_audio(input_audio, 16000)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
# audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file,
)
print(times)
return audio_opt
def get_vc(model_path):
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
print("loading pth %s" % model_path)
cpt = torch.load(model_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1: #
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩
net_g.eval().to(device)
if is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
if __name__ == "__main__":
get_vc(model_path)
audios = os.listdir(input_path)
for file in tq.tqdm(audios):
if file.endswith(".wav"):
file_path = os.path.join(input_path, file)
wav_opt = vc_single(
0, file_path, f0up_key, None, f0method, index_path, index_rate
)
out_path = os.path.join(opt_path, file)
wavfile.write(out_path, tgt_sr, wav_opt)