Retrieval-based-Voice-Conve.../lib/infer_pack/modules/F0Predictor/PMF0Predictor.py

98 lines
3.4 KiB
Python
Raw Normal View History

2023-06-24 15:26:14 +08:00
from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2023-05-29 23:52:23 +08:00
import parselmouth
import numpy as np
2023-05-29 23:52:23 +08:00
class PMF0Predictor(F0Predictor):
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
2023-05-29 23:52:23 +08:00
self.hop_length = hop_length
self.f0_min = f0_min
self.f0_max = f0_max
self.sampling_rate = sampling_rate
def interpolate_f0(self, f0):
"""
2023-05-29 23:52:23 +08:00
对F0进行插值处理
"""
2023-05-29 23:52:23 +08:00
data = np.reshape(f0, (f0.size, 1))
2023-05-29 23:52:23 +08:00
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
vuv_vector[data > 0.0] = 1.0
vuv_vector[data <= 0.0] = 0.0
2023-05-29 23:52:23 +08:00
ip_data = data
2023-05-29 23:52:23 +08:00
frame_number = data.size
last_value = 0.0
for i in range(frame_number):
if data[i] <= 0.0:
j = i + 1
for j in range(i + 1, frame_number):
if data[j] > 0.0:
break
if j < frame_number - 1:
if last_value > 0.0:
step = (data[j] - data[i - 1]) / float(j - i)
for k in range(i, j):
ip_data[k] = data[i - 1] + step * (k - i + 1)
else:
for k in range(i, j):
ip_data[k] = data[j]
else:
for k in range(i, frame_number):
ip_data[k] = last_value
else:
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
2023-05-29 23:52:23 +08:00
last_value = data[i]
return ip_data[:, 0], vuv_vector[:, 0]
def compute_f0(self, wav, p_len=None):
2023-05-29 23:52:23 +08:00
x = wav
if p_len is None:
p_len = x.shape[0] // self.hop_length
2023-05-29 23:52:23 +08:00
else:
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
2023-05-29 23:52:23 +08:00
time_step = self.hop_length / self.sampling_rate * 1000
f0 = (
parselmouth.Sound(x, self.sampling_rate)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max,
)
.selected_array["frequency"]
)
2023-05-29 23:52:23 +08:00
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
f0, uv = self.interpolate_f0(f0)
2023-05-29 23:52:23 +08:00
return f0
def compute_f0_uv(self, wav, p_len=None):
2023-05-29 23:52:23 +08:00
x = wav
if p_len is None:
p_len = x.shape[0] // self.hop_length
2023-05-29 23:52:23 +08:00
else:
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
2023-05-29 23:52:23 +08:00
time_step = self.hop_length / self.sampling_rate * 1000
f0 = (
parselmouth.Sound(x, self.sampling_rate)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max,
)
.selected_array["frequency"]
)
2023-05-29 23:52:23 +08:00
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
f0, uv = self.interpolate_f0(f0)
return f0, uv