mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 02:55:05 +08:00
fix: 卸载音色省显存
顺便将所有print换成了统一的logger
This commit is contained in:
parent
8d5a77dbe9
commit
04a33b9709
@ -5,6 +5,10 @@ from multiprocessing import cpu_count
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def use_fp32_config():
|
def use_fp32_config():
|
||||||
for config_file in [
|
for config_file in [
|
||||||
@ -110,11 +114,11 @@ class Config:
|
|||||||
or "1070" in self.gpu_name
|
or "1070" in self.gpu_name
|
||||||
or "1080" in self.gpu_name
|
or "1080" in self.gpu_name
|
||||||
):
|
):
|
||||||
print("Found GPU", self.gpu_name, ", force to fp32")
|
logger.info("Found GPU", self.gpu_name, ", force to fp32")
|
||||||
self.is_half = False
|
self.is_half = False
|
||||||
use_fp32_config()
|
use_fp32_config()
|
||||||
else:
|
else:
|
||||||
print("Found GPU", self.gpu_name)
|
logger.info("Found GPU", self.gpu_name)
|
||||||
self.gpu_mem = int(
|
self.gpu_mem = int(
|
||||||
torch.cuda.get_device_properties(i_device).total_memory
|
torch.cuda.get_device_properties(i_device).total_memory
|
||||||
/ 1024
|
/ 1024
|
||||||
@ -128,12 +132,12 @@ class Config:
|
|||||||
with open("infer/modules/train/preprocess.py", "w") as f:
|
with open("infer/modules/train/preprocess.py", "w") as f:
|
||||||
f.write(strr)
|
f.write(strr)
|
||||||
elif self.has_mps():
|
elif self.has_mps():
|
||||||
print("No supported Nvidia GPU found")
|
logger.info("No supported Nvidia GPU found")
|
||||||
self.device = self.instead = "mps"
|
self.device = self.instead = "mps"
|
||||||
self.is_half = False
|
self.is_half = False
|
||||||
use_fp32_config()
|
use_fp32_config()
|
||||||
else:
|
else:
|
||||||
print("No supported Nvidia GPU found")
|
logger.info("No supported Nvidia GPU found")
|
||||||
self.device = self.instead = "cpu"
|
self.device = self.instead = "cpu"
|
||||||
self.is_half = False
|
self.is_half = False
|
||||||
use_fp32_config()
|
use_fp32_config()
|
||||||
@ -160,7 +164,7 @@ class Config:
|
|||||||
x_center = 30
|
x_center = 30
|
||||||
x_max = 32
|
x_max = 32
|
||||||
if self.dml:
|
if self.dml:
|
||||||
print("Use DirectML instead")
|
logger.info("Use DirectML instead")
|
||||||
if (
|
if (
|
||||||
os.path.exists(
|
os.path.exists(
|
||||||
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
||||||
@ -188,7 +192,7 @@ class Config:
|
|||||||
self.is_half = False
|
self.is_half = False
|
||||||
else:
|
else:
|
||||||
if self.instead:
|
if self.instead:
|
||||||
print(f"Use {self.instead} instead")
|
logger.info(f"Use {self.instead} instead")
|
||||||
if (
|
if (
|
||||||
os.path.exists(
|
os.path.exists(
|
||||||
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
||||||
|
18
gui_v1.py
18
gui_v1.py
@ -1,5 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
import pdb
|
import logging
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
os.environ["OMP_NUM_THREADS"] = "2"
|
os.environ["OMP_NUM_THREADS"] = "2"
|
||||||
@ -11,6 +11,8 @@ now_dir = os.getcwd()
|
|||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class Harvest(multiprocessing.Process):
|
class Harvest(multiprocessing.Process):
|
||||||
def __init__(self, inp_q, opt_q):
|
def __init__(self, inp_q, opt_q):
|
||||||
@ -356,7 +358,7 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
if event == "start_vc" and self.flag_vc == False:
|
if event == "start_vc" and self.flag_vc == False:
|
||||||
if self.set_values(values) == True:
|
if self.set_values(values) == True:
|
||||||
print("Use CUDA:" + str(torch.cuda.is_available()))
|
logger.info("Use CUDA:" + str(torch.cuda.is_available()))
|
||||||
self.start_vc()
|
self.start_vc()
|
||||||
settings = {
|
settings = {
|
||||||
"pth_path": values["pth_path"],
|
"pth_path": values["pth_path"],
|
||||||
@ -545,8 +547,8 @@ if __name__ == "__main__":
|
|||||||
):
|
):
|
||||||
while self.flag_vc:
|
while self.flag_vc:
|
||||||
time.sleep(self.config.block_time)
|
time.sleep(self.config.block_time)
|
||||||
print("Audio block passed.")
|
logger.debug("Audio block passed.")
|
||||||
print("ENDing VC")
|
logger.debug("ENDing VC")
|
||||||
|
|
||||||
def audio_callback(
|
def audio_callback(
|
||||||
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
||||||
@ -623,7 +625,7 @@ if __name__ == "__main__":
|
|||||||
sola_offset = sola_offset.item()
|
sola_offset = sola_offset.item()
|
||||||
else:
|
else:
|
||||||
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||||||
print("sola_offset =" + str(int(sola_offset)))
|
logger.debug("sola_offset =" + str(int(sola_offset)))
|
||||||
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||||
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
||||||
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
||||||
@ -663,7 +665,7 @@ if __name__ == "__main__":
|
|||||||
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||||
total_time = time.perf_counter() - start_time
|
total_time = time.perf_counter() - start_time
|
||||||
self.window["infer_time"].update(int(total_time * 1000))
|
self.window["infer_time"].update(int(total_time * 1000))
|
||||||
print("Infer time:" + str(total_time))
|
logger.info("Infer time:" + str(total_time))
|
||||||
|
|
||||||
def get_devices(self, update: bool = True):
|
def get_devices(self, update: bool = True):
|
||||||
"""获取设备列表"""
|
"""获取设备列表"""
|
||||||
@ -716,8 +718,8 @@ if __name__ == "__main__":
|
|||||||
sd.default.device[1] = output_device_indices[
|
sd.default.device[1] = output_device_indices[
|
||||||
output_devices.index(output_device)
|
output_devices.index(output_device)
|
||||||
]
|
]
|
||||||
print("Input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
logger.info("Input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
||||||
print(
|
logger.info(
|
||||||
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
|
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -18,11 +18,10 @@ class I18nAuto:
|
|||||||
if not os.path.exists(f"./i18n/locale/{language}.json"):
|
if not os.path.exists(f"./i18n/locale/{language}.json"):
|
||||||
language = "en_US"
|
language = "en_US"
|
||||||
self.language = language
|
self.language = language
|
||||||
# print("Use Language:", language)
|
|
||||||
self.language_map = load_language_list(language)
|
self.language_map = load_language_list(language)
|
||||||
|
|
||||||
def __call__(self, key):
|
def __call__(self, key):
|
||||||
return self.language_map.get(key, key)
|
return self.language_map.get(key, key)
|
||||||
|
|
||||||
def print(self):
|
def __repr__(self):
|
||||||
print("Use Language:", self.language)
|
return "Use Language: " + self.language
|
||||||
|
44
infer-web.py
44
infer-web.py
@ -32,6 +32,8 @@ from infer.modules.vc.modules import VC
|
|||||||
|
|
||||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
tmp = os.path.join(now_dir, "TEMP")
|
tmp = os.path.join(now_dir, "TEMP")
|
||||||
shutil.rmtree(tmp, ignore_errors=True)
|
shutil.rmtree(tmp, ignore_errors=True)
|
||||||
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
||||||
@ -58,7 +60,7 @@ if config.dml == True:
|
|||||||
|
|
||||||
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
i18n.print()
|
logger.info(i18n)
|
||||||
# 判断是否有能用来训练和加速推理的N卡
|
# 判断是否有能用来训练和加速推理的N卡
|
||||||
ngpu = torch.cuda.device_count()
|
ngpu = torch.cuda.device_count()
|
||||||
gpu_infos = []
|
gpu_infos = []
|
||||||
@ -213,7 +215,7 @@ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|||||||
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
||||||
+ str(config.noparallel)
|
+ str(config.noparallel)
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
||||||
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||||||
done = [False]
|
done = [False]
|
||||||
@ -232,7 +234,7 @@ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|||||||
break
|
break
|
||||||
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
||||||
log = f.read()
|
log = f.read()
|
||||||
print(log)
|
logger.info(log)
|
||||||
yield log
|
yield log
|
||||||
|
|
||||||
|
|
||||||
@ -254,7 +256,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
f0method,
|
f0method,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
cmd, shell=True, cwd=now_dir
|
cmd, shell=True, cwd=now_dir
|
||||||
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
||||||
@ -281,7 +283,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
exp_dir,
|
exp_dir,
|
||||||
config.is_half,
|
config.is_half,
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
cmd, shell=True, cwd=now_dir
|
cmd, shell=True, cwd=now_dir
|
||||||
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||||||
@ -304,7 +306,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
exp_dir,
|
exp_dir,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
cmd, shell=True, cwd=now_dir
|
cmd, shell=True, cwd=now_dir
|
||||||
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||||||
@ -320,7 +322,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
break
|
break
|
||||||
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
||||||
log = f.read()
|
log = f.read()
|
||||||
print(log)
|
logger.info(log)
|
||||||
yield log
|
yield log
|
||||||
####对不同part分别开多进程
|
####对不同part分别开多进程
|
||||||
"""
|
"""
|
||||||
@ -342,7 +344,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
exp_dir,
|
exp_dir,
|
||||||
version19,
|
version19,
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
cmd, shell=True, cwd=now_dir
|
cmd, shell=True, cwd=now_dir
|
||||||
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||||||
@ -364,7 +366,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
|
|||||||
break
|
break
|
||||||
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
||||||
log = f.read()
|
log = f.read()
|
||||||
print(log)
|
logger.info(log)
|
||||||
yield log
|
yield log
|
||||||
|
|
||||||
|
|
||||||
@ -378,12 +380,12 @@ def change_sr2(sr2, if_f0_3, version19):
|
|||||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||||||
)
|
)
|
||||||
if not if_pretrained_generator_exist:
|
if not if_pretrained_generator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
if not if_pretrained_discriminator_exist:
|
if not if_pretrained_discriminator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
@ -414,12 +416,12 @@ def change_version19(sr2, if_f0_3, version19):
|
|||||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||||||
)
|
)
|
||||||
if not if_pretrained_generator_exist:
|
if not if_pretrained_generator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
if not if_pretrained_discriminator_exist:
|
if not if_pretrained_discriminator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
@ -443,12 +445,12 @@ def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D
|
|||||||
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
|
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
|
||||||
)
|
)
|
||||||
if not if_pretrained_generator_exist:
|
if not if_pretrained_generator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2),
|
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
if not if_pretrained_discriminator_exist:
|
if not if_pretrained_discriminator_exist:
|
||||||
print(
|
logger.warn(
|
||||||
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2),
|
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2),
|
||||||
"not exist, will not use pretrained model",
|
"not exist, will not use pretrained model",
|
||||||
)
|
)
|
||||||
@ -556,14 +558,14 @@ def click_train(
|
|||||||
shuffle(opt)
|
shuffle(opt)
|
||||||
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
||||||
f.write("\n".join(opt))
|
f.write("\n".join(opt))
|
||||||
print("Write filelist done")
|
logger.debug("Write filelist done")
|
||||||
# 生成config#无需生成config
|
# 生成config#无需生成config
|
||||||
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||||||
print("Use gpus:", gpus16)
|
logger.info("Use gpus:", gpus16)
|
||||||
if pretrained_G14 == "":
|
if pretrained_G14 == "":
|
||||||
print("No pretrained Generator")
|
logger.info("No pretrained Generator")
|
||||||
if pretrained_D15 == "":
|
if pretrained_D15 == "":
|
||||||
print("No pretrained Discriminator")
|
logger.info("No pretrained Discriminator")
|
||||||
if gpus16:
|
if gpus16:
|
||||||
cmd = get_quoted_python_cmd() + ' infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' % (
|
cmd = get_quoted_python_cmd() + ' infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' % (
|
||||||
exp_dir1,
|
exp_dir1,
|
||||||
@ -599,7 +601,7 @@ def click_train(
|
|||||||
version19,
|
version19,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
print(cmd)
|
logger.info(cmd)
|
||||||
p = Popen(cmd, shell=True, cwd=now_dir)
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
||||||
p.wait()
|
p.wait()
|
||||||
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
||||||
@ -646,7 +648,7 @@ def train_index(exp_dir1, version19):
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
info = traceback.format_exc()
|
info = traceback.format_exc()
|
||||||
print(info)
|
logger.info(info)
|
||||||
infos.append(info)
|
infos.append(info)
|
||||||
yield "\n".join(infos)
|
yield "\n".join(infos)
|
||||||
|
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
import math
|
import math
|
||||||
import os
|
import logging
|
||||||
import pdb
|
logger = logging.getLogger(__name__)
|
||||||
from time import time as ttime
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -616,7 +615,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
)
|
)
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
self.dec.remove_weight_norm()
|
self.dec.remove_weight_norm()
|
||||||
@ -732,7 +731,7 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
|||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
)
|
)
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
self.dec.remove_weight_norm()
|
self.dec.remove_weight_norm()
|
||||||
@ -845,7 +844,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
)
|
)
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
self.dec.remove_weight_norm()
|
self.dec.remove_weight_norm()
|
||||||
@ -951,7 +950,7 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
|||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
)
|
)
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
self.dec.remove_weight_norm()
|
self.dec.remove_weight_norm()
|
||||||
|
@ -1,7 +1,6 @@
|
|||||||
import math
|
import math
|
||||||
import os
|
import logging
|
||||||
import pdb
|
logger = logging.getLogger(__name__)
|
||||||
from time import time as ttime
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -620,7 +619,7 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
|
|||||||
)
|
)
|
||||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
self.speaker_map = None
|
self.speaker_map = None
|
||||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
self.dec.remove_weight_norm()
|
self.dec.remove_weight_norm()
|
||||||
|
@ -3,10 +3,13 @@ import numpy as np
|
|||||||
import onnxruntime
|
import onnxruntime
|
||||||
import soundfile
|
import soundfile
|
||||||
|
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class ContentVec:
|
class ContentVec:
|
||||||
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
||||||
print("Load model(s) from {}".format(vec_path))
|
logger.info("Load model(s) from {}".format(vec_path))
|
||||||
if device == "cpu" or device is None:
|
if device == "cpu" or device is None:
|
||||||
providers = ["CPUExecutionProvider"]
|
providers = ["CPUExecutionProvider"]
|
||||||
elif device == "cuda":
|
elif device == "cuda":
|
||||||
|
@ -7,6 +7,10 @@ import torch.nn.functional as F
|
|||||||
from librosa.util import normalize, pad_center, tiny
|
from librosa.util import normalize, pad_center, tiny
|
||||||
from scipy.signal import get_window
|
from scipy.signal import get_window
|
||||||
|
|
||||||
|
import logging
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
||||||
def window_sumsquare(
|
def window_sumsquare(
|
||||||
@ -691,4 +695,4 @@ if __name__ == "__main__":
|
|||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
t1 = ttime()
|
t1 = ttime()
|
||||||
print(f0.shape, t1 - t0)
|
logger.info(f0.shape, t1 - t0)
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
@ -110,7 +112,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|||||||
try:
|
try:
|
||||||
spec = torch.load(spec_filename)
|
spec = torch.load(spec_filename)
|
||||||
except:
|
except:
|
||||||
print(spec_filename, traceback.format_exc())
|
logger.warn(spec_filename, traceback.format_exc())
|
||||||
spec = spectrogram_torch(
|
spec = spectrogram_torch(
|
||||||
audio_norm,
|
audio_norm,
|
||||||
self.filter_length,
|
self.filter_length,
|
||||||
@ -302,7 +304,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|||||||
try:
|
try:
|
||||||
spec = torch.load(spec_filename)
|
spec = torch.load(spec_filename)
|
||||||
except:
|
except:
|
||||||
print(spec_filename, traceback.format_exc())
|
logger.warn(spec_filename, traceback.format_exc())
|
||||||
spec = spectrogram_torch(
|
spec = spectrogram_torch(
|
||||||
audio_norm,
|
audio_norm,
|
||||||
self.filter_length,
|
self.filter_length,
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.utils.data
|
import torch.utils.data
|
||||||
from librosa.filters import mel as librosa_mel_fn
|
from librosa.filters import mel as librosa_mel_fn
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
MAX_WAV_VALUE = 32768.0
|
MAX_WAV_VALUE = 32768.0
|
||||||
|
|
||||||
@ -51,9 +53,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|||||||
"""
|
"""
|
||||||
# Validation
|
# Validation
|
||||||
if torch.min(y) < -1.07:
|
if torch.min(y) < -1.07:
|
||||||
print("spectrogram_torch min value is ", torch.min(y))
|
logger.debug("min value is ", torch.min(y))
|
||||||
if torch.max(y) > 1.07:
|
if torch.max(y) > 1.07:
|
||||||
print("spectrogram_torch max value is ", torch.max(y))
|
logger.debug("max value is ", torch.max(y))
|
||||||
|
|
||||||
# Window - Cache if needed
|
# Window - Cache if needed
|
||||||
global hann_window
|
global hann_window
|
||||||
|
@ -33,7 +33,7 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
|||||||
try:
|
try:
|
||||||
new_state_dict[k] = saved_state_dict[k]
|
new_state_dict[k] = saved_state_dict[k]
|
||||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||||
print(
|
logger.warn(
|
||||||
"shape-%s-mismatch. need: %s, get: %s"
|
"shape-%s-mismatch. need: %s, get: %s"
|
||||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||||
) #
|
) #
|
||||||
@ -109,7 +109,7 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
|||||||
try:
|
try:
|
||||||
new_state_dict[k] = saved_state_dict[k]
|
new_state_dict[k] = saved_state_dict[k]
|
||||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||||
print(
|
logger.warn(
|
||||||
"shape-%s-mismatch|need-%s|get-%s"
|
"shape-%s-mismatch|need-%s|get-%s"
|
||||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||||
) #
|
) #
|
||||||
@ -207,7 +207,7 @@ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|||||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||||
x = f_list[-1]
|
x = f_list[-1]
|
||||||
print(x)
|
logger.debug(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(os.path.join(now_dir))
|
sys.path.append(os.path.join(now_dir))
|
||||||
@ -82,7 +84,7 @@ def main():
|
|||||||
n_gpus = 1
|
n_gpus = 1
|
||||||
if n_gpus < 1:
|
if n_gpus < 1:
|
||||||
# patch to unblock people without gpus. there is probably a better way.
|
# patch to unblock people without gpus. there is probably a better way.
|
||||||
print("NO GPU DETECTED: falling back to CPU - this may take a while")
|
logger.warn("NO GPU DETECTED: falling back to CPU - this may take a while")
|
||||||
n_gpus = 1
|
n_gpus = 1
|
||||||
os.environ["MASTER_ADDR"] = "localhost"
|
os.environ["MASTER_ADDR"] = "localhost"
|
||||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||||
@ -209,7 +211,7 @@ def run(rank, n_gpus, hps):
|
|||||||
if hps.pretrainG != "":
|
if hps.pretrainG != "":
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
||||||
print(
|
logger.info(
|
||||||
net_g.module.load_state_dict(
|
net_g.module.load_state_dict(
|
||||||
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
||||||
)
|
)
|
||||||
@ -217,7 +219,7 @@ def run(rank, n_gpus, hps):
|
|||||||
if hps.pretrainD != "":
|
if hps.pretrainD != "":
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
logger.info("loaded pretrained %s" % (hps.pretrainD))
|
logger.info("loaded pretrained %s" % (hps.pretrainD))
|
||||||
print(
|
logger.info(
|
||||||
net_d.module.load_state_dict(
|
net_d.module.load_state_dict(
|
||||||
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
||||||
)
|
)
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import librosa
|
import librosa
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -88,7 +90,7 @@ class Predictor:
|
|||||||
def __init__(self, args):
|
def __init__(self, args):
|
||||||
import onnxruntime as ort
|
import onnxruntime as ort
|
||||||
|
|
||||||
print(ort.get_available_providers())
|
logger.info(ort.get_available_providers())
|
||||||
self.args = args
|
self.args = args
|
||||||
self.model_ = get_models(
|
self.model_ = get_models(
|
||||||
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
||||||
@ -101,7 +103,7 @@ class Predictor:
|
|||||||
"CPUExecutionProvider",
|
"CPUExecutionProvider",
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
print("ONNX load done")
|
logger.info("ONNX load done")
|
||||||
|
|
||||||
def demix(self, mix):
|
def demix(self, mix):
|
||||||
samples = mix.shape[-1]
|
samples = mix.shape[-1]
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import ffmpeg
|
import ffmpeg
|
||||||
import torch
|
import torch
|
||||||
@ -92,5 +94,5 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
|
|||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
print("Executed torch.cuda.empty_cache()")
|
logger.info("Executed torch.cuda.empty_cache()")
|
||||||
yield "\n".join(infos)
|
yield "\n".join(infos)
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import librosa
|
import librosa
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -116,7 +118,7 @@ class AudioPre:
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||||
print("%s instruments done" % name)
|
logger.info("%s instruments done" % name)
|
||||||
if format in ["wav", "flac"]:
|
if format in ["wav", "flac"]:
|
||||||
sf.write(
|
sf.write(
|
||||||
os.path.join(
|
os.path.join(
|
||||||
@ -150,7 +152,7 @@ class AudioPre:
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||||
print("%s vocals done" % name)
|
logger.info("%s vocals done" % name)
|
||||||
if format in ["wav", "flac"]:
|
if format in ["wav", "flac"]:
|
||||||
sf.write(
|
sf.write(
|
||||||
os.path.join(
|
os.path.join(
|
||||||
@ -283,7 +285,7 @@ class AudioPreDeEcho:
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||||
print("%s instruments done" % name)
|
logger.info("%s instruments done" % name)
|
||||||
if format in ["wav", "flac"]:
|
if format in ["wav", "flac"]:
|
||||||
sf.write(
|
sf.write(
|
||||||
os.path.join(
|
os.path.join(
|
||||||
@ -317,7 +319,7 @@ class AudioPreDeEcho:
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||||
print("%s vocals done" % name)
|
logger.info("%s vocals done" % name)
|
||||||
if format in ["wav", "flac"]:
|
if format in ["wav", "flac"]:
|
||||||
sf.write(
|
sf.write(
|
||||||
os.path.join(
|
os.path.join(
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
@ -30,14 +32,7 @@ class VC:
|
|||||||
self.config = config
|
self.config = config
|
||||||
|
|
||||||
def get_vc(self, sid, *to_return_protect):
|
def get_vc(self, sid, *to_return_protect):
|
||||||
person = f'{os.getenv("weight_root")}/{sid}'
|
logger.info("Get sid: " + sid)
|
||||||
print(f"Loading: {person}")
|
|
||||||
|
|
||||||
self.cpt = torch.load(person, map_location="cpu")
|
|
||||||
self.tgt_sr = self.cpt["config"][-1]
|
|
||||||
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
||||||
self.if_f0 = self.cpt.get("f0", 1)
|
|
||||||
self.version = self.cpt.get("version", "v1")
|
|
||||||
|
|
||||||
to_return_protect0 = {
|
to_return_protect0 = {
|
||||||
"visible": self.if_f0 != 0,
|
"visible": self.if_f0 != 0,
|
||||||
@ -54,6 +49,57 @@ class VC:
|
|||||||
"__type__": "update",
|
"__type__": "update",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if not sid:
|
||||||
|
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
||||||
|
logger.info("Clean model cache")
|
||||||
|
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr # ,cpt
|
||||||
|
self.hubert_model = self.net_g = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
###楼下不这么折腾清理不干净
|
||||||
|
self.if_f0 = self.cpt.get("f0", 1)
|
||||||
|
self.version = self.cpt.get("version", "v1")
|
||||||
|
if self.version == "v1":
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
self.net_g = SynthesizerTrnMs256NSFsid(
|
||||||
|
*self.cpt["config"], is_half=self.config.is_half
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
|
||||||
|
elif self.version == "v2":
|
||||||
|
if self.if_f0 == 1:
|
||||||
|
self.net_g = SynthesizerTrnMs768NSFsid(
|
||||||
|
*self.cpt["config"], is_half=self.config.is_half
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
|
||||||
|
del self.net_g, self.cpt
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return (
|
||||||
|
{"visible": False, "__type__": "update"},
|
||||||
|
{
|
||||||
|
"visible": True,
|
||||||
|
"value": to_return_protect0,
|
||||||
|
"__type__": "update",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"visible": True,
|
||||||
|
"value": to_return_protect1,
|
||||||
|
"__type__": "update",
|
||||||
|
},
|
||||||
|
"",
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
person = f'{os.getenv("weight_root")}/{sid}'
|
||||||
|
logger.info(f"Loading: {person}")
|
||||||
|
|
||||||
|
self.cpt = torch.load(person, map_location="cpu")
|
||||||
|
self.tgt_sr = self.cpt["config"][-1]
|
||||||
|
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||||
|
self.if_f0 = self.cpt.get("f0", 1)
|
||||||
|
self.version = self.cpt.get("version", "v1")
|
||||||
|
|
||||||
synthesizer_class = {
|
synthesizer_class = {
|
||||||
("v1", 1): SynthesizerTrnMs256NSFsid,
|
("v1", 1): SynthesizerTrnMs256NSFsid,
|
||||||
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
|
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
|
||||||
@ -77,7 +123,7 @@ class VC:
|
|||||||
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
||||||
n_spk = self.cpt["config"][-3]
|
n_spk = self.cpt["config"][-3]
|
||||||
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
||||||
print("Select index:", index["value"])
|
logger.info("Select index: " + index["value"])
|
||||||
|
|
||||||
return (
|
return (
|
||||||
(
|
(
|
||||||
@ -165,7 +211,7 @@ class VC:
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
info = traceback.format_exc()
|
info = traceback.format_exc()
|
||||||
print(info)
|
logger.warn(info)
|
||||||
return info, (None, None)
|
return info, (None, None)
|
||||||
|
|
||||||
def vc_multi(
|
def vc_multi(
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
|
|
||||||
@ -139,7 +142,7 @@ class Pipeline(object):
|
|||||||
if not hasattr(self, "model_rmvpe"):
|
if not hasattr(self, "model_rmvpe"):
|
||||||
from infer.lib.rmvpe import RMVPE
|
from infer.lib.rmvpe import RMVPE
|
||||||
|
|
||||||
print(
|
logger.info(
|
||||||
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
||||||
)
|
)
|
||||||
self.model_rmvpe = RMVPE(
|
self.model_rmvpe = RMVPE(
|
||||||
@ -152,7 +155,7 @@ class Pipeline(object):
|
|||||||
if "privateuseone" in str(self.device): # clean ortruntime memory
|
if "privateuseone" in str(self.device): # clean ortruntime memory
|
||||||
del self.model_rmvpe.model
|
del self.model_rmvpe.model
|
||||||
del self.model_rmvpe
|
del self.model_rmvpe
|
||||||
print("Cleaning ortruntime memory")
|
logger.info("Cleaning ortruntime memory")
|
||||||
|
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
|
@ -13,9 +13,10 @@ logging.getLogger("numba").setLevel(logging.WARNING)
|
|||||||
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
||||||
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
||||||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
i18n = I18nAuto()
|
i18n = I18nAuto()
|
||||||
i18n.print()
|
logger.info(i18n)
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
config = Config()
|
config = Config()
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
|
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
|
||||||
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
|
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
|
||||||
import os
|
import os
|
||||||
import sys
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -55,7 +56,7 @@ def main(path, root):
|
|||||||
torch.manual_seed(114514)
|
torch.manual_seed(114514)
|
||||||
model_a = torch.load(path, map_location="cpu")["weight"]
|
model_a = torch.load(path, map_location="cpu")["weight"]
|
||||||
|
|
||||||
print("Query:\t\t%s\t%s" % (path, model_hash(path)))
|
logger.info("Query:\t\t%s\t%s" % (path, model_hash(path)))
|
||||||
|
|
||||||
map_attn_a = {}
|
map_attn_a = {}
|
||||||
map_rand_input = {}
|
map_rand_input = {}
|
||||||
@ -82,7 +83,7 @@ def main(path, root):
|
|||||||
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
|
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
|
||||||
sims.append(sim)
|
sims.append(sim)
|
||||||
|
|
||||||
print(
|
logger.info(
|
||||||
"Reference:\t%s\t%s\t%s"
|
"Reference:\t%s\t%s\t%s"
|
||||||
% (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
|
% (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
|
||||||
)
|
)
|
||||||
|
@ -3,7 +3,8 @@
|
|||||||
对源特征进行检索
|
对源特征进行检索
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
import pdb
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import parselmouth
|
import parselmouth
|
||||||
import torch
|
import torch
|
||||||
@ -15,7 +16,6 @@ from time import time as ttime
|
|||||||
# import pyworld
|
# import pyworld
|
||||||
import librosa
|
import librosa
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy.signal as signal
|
|
||||||
import soundfile as sf
|
import soundfile as sf
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from fairseq import checkpoint_utils
|
from fairseq import checkpoint_utils
|
||||||
@ -34,7 +34,7 @@ from scipy.io import wavfile
|
|||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
model_path = r"E:\codes\py39\vits_vc_gpu_train\assets\hubert\hubert_base.pt" #
|
model_path = r"E:\codes\py39\vits_vc_gpu_train\assets\hubert\hubert_base.pt" #
|
||||||
print("Load model(s) from {}".format(model_path))
|
logger.info("Load model(s) from {}".format(model_path))
|
||||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||||
[model_path],
|
[model_path],
|
||||||
suffix="",
|
suffix="",
|
||||||
@ -77,7 +77,7 @@ net_g = SynthesizerTrn256(
|
|||||||
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
|
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
|
||||||
# weights=torch.load("infer/ft-mi-sim1k.pt")
|
# weights=torch.load("infer/ft-mi-sim1k.pt")
|
||||||
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
||||||
print(net_g.load_state_dict(weights, strict=True))
|
logger.debug(net_g.load_state_dict(weights, strict=True))
|
||||||
|
|
||||||
net_g.eval().to(device)
|
net_g.eval().to(device)
|
||||||
net_g.half()
|
net_g.half()
|
||||||
@ -198,4 +198,4 @@ for idx, name in enumerate(
|
|||||||
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
|
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
|
||||||
|
|
||||||
|
|
||||||
print(ta0, ta1, ta2) #
|
logger.debug(ta0, ta1, ta2) #
|
||||||
|
@ -3,6 +3,9 @@
|
|||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
from multiprocessing import cpu_count
|
from multiprocessing import cpu_count
|
||||||
|
|
||||||
import faiss
|
import faiss
|
||||||
@ -23,11 +26,11 @@ big_npy = np.concatenate(npys, 0)
|
|||||||
big_npy_idx = np.arange(big_npy.shape[0])
|
big_npy_idx = np.arange(big_npy.shape[0])
|
||||||
np.random.shuffle(big_npy_idx)
|
np.random.shuffle(big_npy_idx)
|
||||||
big_npy = big_npy[big_npy_idx]
|
big_npy = big_npy[big_npy_idx]
|
||||||
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
||||||
if big_npy.shape[0] > 2e5:
|
if big_npy.shape[0] > 2e5:
|
||||||
# if(1):
|
# if(1):
|
||||||
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
|
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
|
||||||
print(info)
|
logger.info(info)
|
||||||
try:
|
try:
|
||||||
big_npy = (
|
big_npy = (
|
||||||
MiniBatchKMeans(
|
MiniBatchKMeans(
|
||||||
@ -42,7 +45,7 @@ if big_npy.shape[0] > 2e5:
|
|||||||
)
|
)
|
||||||
except:
|
except:
|
||||||
info = traceback.format_exc()
|
info = traceback.format_exc()
|
||||||
print(info)
|
logger.warn(info)
|
||||||
|
|
||||||
np.save("tools/infer/big_src_feature_mi.npy", big_npy)
|
np.save("tools/infer/big_src_feature_mi.npy", big_npy)
|
||||||
|
|
||||||
@ -50,14 +53,14 @@ np.save("tools/infer/big_src_feature_mi.npy", big_npy)
|
|||||||
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
||||||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||||||
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
|
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
|
||||||
print("Training...")
|
logger.info("Training...")
|
||||||
index_ivf = faiss.extract_index_ivf(index) #
|
index_ivf = faiss.extract_index_ivf(index) #
|
||||||
index_ivf.nprobe = 1
|
index_ivf.nprobe = 1
|
||||||
index.train(big_npy)
|
index.train(big_npy)
|
||||||
faiss.write_index(
|
faiss.write_index(
|
||||||
index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
|
index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
|
||||||
)
|
)
|
||||||
print("Adding...")
|
logger.info("Adding...")
|
||||||
batch_size_add = 8192
|
batch_size_add = 8192
|
||||||
for i in range(0, big_npy.shape[0], batch_size_add):
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
||||||
index.add(big_npy[i : i + batch_size_add])
|
index.add(big_npy[i : i + batch_size_add])
|
||||||
|
@ -2,6 +2,8 @@
|
|||||||
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
|
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
import faiss
|
import faiss
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -13,19 +15,19 @@ for name in sorted(list(os.listdir(inp_root))):
|
|||||||
phone = np.load("%s/%s" % (inp_root, name))
|
phone = np.load("%s/%s" % (inp_root, name))
|
||||||
npys.append(phone)
|
npys.append(phone)
|
||||||
big_npy = np.concatenate(npys, 0)
|
big_npy = np.concatenate(npys, 0)
|
||||||
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
||||||
np.save("infer/big_src_feature_mi.npy", big_npy)
|
np.save("infer/big_src_feature_mi.npy", big_npy)
|
||||||
|
|
||||||
##################train+add
|
##################train+add
|
||||||
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
||||||
print(big_npy.shape)
|
logger.debug(big_npy.shape)
|
||||||
index = faiss.index_factory(256, "IVF512,Flat") # mi
|
index = faiss.index_factory(256, "IVF512,Flat") # mi
|
||||||
print("Training...")
|
logger.info("Training...")
|
||||||
index_ivf = faiss.extract_index_ivf(index) #
|
index_ivf = faiss.extract_index_ivf(index) #
|
||||||
index_ivf.nprobe = 9
|
index_ivf.nprobe = 9
|
||||||
index.train(big_npy)
|
index.train(big_npy)
|
||||||
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
|
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
|
||||||
print("Adding...")
|
logger.info("Adding...")
|
||||||
index.add(big_npy)
|
index.add(big_npy)
|
||||||
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
||||||
"""
|
"""
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
import traceback
|
import traceback
|
||||||
|
import logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
|
|
||||||
import fairseq
|
import fairseq
|
||||||
@ -67,7 +70,7 @@ class RVC:
|
|||||||
if index_rate != 0:
|
if index_rate != 0:
|
||||||
self.index = faiss.read_index(index_path)
|
self.index = faiss.read_index(index_path)
|
||||||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||||
print("Index search enabled")
|
logger.info("Index search enabled")
|
||||||
self.index_path = index_path
|
self.index_path = index_path
|
||||||
self.index_rate = index_rate
|
self.index_rate = index_rate
|
||||||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||||||
@ -102,7 +105,7 @@ class RVC:
|
|||||||
else:
|
else:
|
||||||
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||||||
del self.net_g.enc_q
|
del self.net_g.enc_q
|
||||||
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
logger.debug(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||||||
self.net_g.eval().to(device)
|
self.net_g.eval().to(device)
|
||||||
# print(2333333333,device,config.device,self.device)#net_g是device,hubert是config.device
|
# print(2333333333,device,config.device,self.device)#net_g是device,hubert是config.device
|
||||||
if config.is_half:
|
if config.is_half:
|
||||||
@ -111,7 +114,7 @@ class RVC:
|
|||||||
self.net_g = self.net_g.float()
|
self.net_g = self.net_g.float()
|
||||||
self.is_half = config.is_half
|
self.is_half = config.is_half
|
||||||
except:
|
except:
|
||||||
print(traceback.format_exc())
|
logger.warn(traceback.format_exc())
|
||||||
|
|
||||||
def change_key(self, new_key):
|
def change_key(self, new_key):
|
||||||
self.f0_up_key = new_key
|
self.f0_up_key = new_key
|
||||||
@ -120,7 +123,7 @@ class RVC:
|
|||||||
if new_index_rate != 0 and self.index_rate == 0:
|
if new_index_rate != 0 and self.index_rate == 0:
|
||||||
self.index = faiss.read_index(self.index_path)
|
self.index = faiss.read_index(self.index_path)
|
||||||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||||||
print("Index search enabled")
|
logger.info("Index search enabled")
|
||||||
self.index_rate = new_index_rate
|
self.index_rate = new_index_rate
|
||||||
|
|
||||||
def get_f0_post(self, f0):
|
def get_f0_post(self, f0):
|
||||||
@ -237,7 +240,7 @@ class RVC:
|
|||||||
if hasattr(self, "model_rmvpe") == False:
|
if hasattr(self, "model_rmvpe") == False:
|
||||||
from infer.lib.rmvpe import RMVPE
|
from infer.lib.rmvpe import RMVPE
|
||||||
|
|
||||||
print("Loading rmvpe model")
|
logger.info("Loading rmvpe model")
|
||||||
self.model_rmvpe = RMVPE(
|
self.model_rmvpe = RMVPE(
|
||||||
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
|
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
|
||||||
# "rmvpe.pt", is_half=False, device=self.device####dml配置
|
# "rmvpe.pt", is_half=False, device=self.device####dml配置
|
||||||
@ -295,10 +298,10 @@ class RVC:
|
|||||||
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print("Index search FAILED or disabled")
|
logger.warn("Index search FAILED or disabled")
|
||||||
except:
|
except:
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
print("Index search FAILED")
|
logger.warn("Index search FAILED")
|
||||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||||
t3 = ttime()
|
t3 = ttime()
|
||||||
if self.if_f0 == 1:
|
if self.if_f0 == 1:
|
||||||
@ -338,5 +341,5 @@ class RVC:
|
|||||||
.float()
|
.float()
|
||||||
)
|
)
|
||||||
t5 = ttime()
|
t5 = ttime()
|
||||||
print("Spent time: fea =", t2 - t1, ", index =", t3 - t2, ", f0 =", t4 - t3, ", model =", t5 - t4)
|
logger.info("Spent time: fea =", t2 - t1, ", index =", t3 - t2, ", f0 =", t4 - t3, ", model =", t5 - t4)
|
||||||
return infered_audio
|
return infered_audio
|
||||||
|
Loading…
Reference in New Issue
Block a user