mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 19:15:04 +08:00
uvr5 modules
This commit is contained in:
parent
2e56c5c600
commit
0de947cf70
239
infer/modules/uvr5/mdxnet.py
Normal file
239
infer/modules/uvr5/mdxnet.py
Normal file
@ -0,0 +1,239 @@
|
||||
import os
|
||||
import warnings
|
||||
|
||||
import soundfile as sf
|
||||
import librosa
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
|
||||
|
||||
class ConvTDFNetTrim:
|
||||
def __init__(
|
||||
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
|
||||
):
|
||||
super(ConvTDFNetTrim, self).__init__()
|
||||
|
||||
self.dim_f = dim_f
|
||||
self.dim_t = 2**dim_t
|
||||
self.n_fft = n_fft
|
||||
self.hop = hop
|
||||
self.n_bins = self.n_fft // 2 + 1
|
||||
self.chunk_size = hop * (self.dim_t - 1)
|
||||
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
|
||||
device
|
||||
)
|
||||
self.target_name = target_name
|
||||
self.blender = "blender" in model_name
|
||||
|
||||
self.dim_c = 4
|
||||
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
|
||||
self.freq_pad = torch.zeros(
|
||||
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
||||
).to(device)
|
||||
|
||||
self.n = L // 2
|
||||
|
||||
def stft(self, x):
|
||||
x = x.reshape([-1, self.chunk_size])
|
||||
x = torch.stft(
|
||||
x,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop,
|
||||
window=self.window,
|
||||
center=True,
|
||||
return_complex=True,
|
||||
)
|
||||
x = torch.view_as_real(x)
|
||||
x = x.permute([0, 3, 1, 2])
|
||||
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
||||
[-1, self.dim_c, self.n_bins, self.dim_t]
|
||||
)
|
||||
return x[:, :, : self.dim_f]
|
||||
|
||||
def istft(self, x, freq_pad=None):
|
||||
freq_pad = (
|
||||
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
||||
if freq_pad is None
|
||||
else freq_pad
|
||||
)
|
||||
x = torch.cat([x, freq_pad], -2)
|
||||
c = 4 * 2 if self.target_name == "*" else 2
|
||||
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
||||
[-1, 2, self.n_bins, self.dim_t]
|
||||
)
|
||||
x = x.permute([0, 2, 3, 1])
|
||||
x = x.contiguous()
|
||||
x = torch.view_as_complex(x)
|
||||
x = torch.istft(
|
||||
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
||||
)
|
||||
return x.reshape([-1, c, self.chunk_size])
|
||||
|
||||
|
||||
def get_models(device, dim_f, dim_t, n_fft):
|
||||
return ConvTDFNetTrim(
|
||||
device=device,
|
||||
model_name="Conv-TDF",
|
||||
target_name="vocals",
|
||||
L=11,
|
||||
dim_f=dim_f,
|
||||
dim_t=dim_t,
|
||||
n_fft=n_fft,
|
||||
)
|
||||
|
||||
|
||||
class Predictor:
|
||||
def __init__(self, args):
|
||||
print(ort.get_available_providers())
|
||||
self.args = args
|
||||
self.model_ = get_models(
|
||||
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
|
||||
)
|
||||
self.model = ort.InferenceSession(
|
||||
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
|
||||
providers=["CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"],
|
||||
)
|
||||
print("onnx load done")
|
||||
|
||||
def demix(self, mix):
|
||||
samples = mix.shape[-1]
|
||||
margin = self.args.margin
|
||||
chunk_size = self.args.chunks * 44100
|
||||
assert not margin == 0, "margin cannot be zero!"
|
||||
if margin > chunk_size:
|
||||
margin = chunk_size
|
||||
|
||||
segmented_mix = {}
|
||||
|
||||
if self.args.chunks == 0 or samples < chunk_size:
|
||||
chunk_size = samples
|
||||
|
||||
counter = -1
|
||||
for skip in range(0, samples, chunk_size):
|
||||
counter += 1
|
||||
|
||||
s_margin = 0 if counter == 0 else margin
|
||||
end = min(skip + chunk_size + margin, samples)
|
||||
|
||||
start = skip - s_margin
|
||||
|
||||
segmented_mix[skip] = mix[:, start:end].copy()
|
||||
if end == samples:
|
||||
break
|
||||
|
||||
sources = self.demix_base(segmented_mix, margin_size=margin)
|
||||
"""
|
||||
mix:(2,big_sample)
|
||||
segmented_mix:offset->(2,small_sample)
|
||||
sources:(1,2,big_sample)
|
||||
"""
|
||||
return sources
|
||||
|
||||
def demix_base(self, mixes, margin_size):
|
||||
chunked_sources = []
|
||||
progress_bar = tqdm(total=len(mixes))
|
||||
progress_bar.set_description("Processing")
|
||||
for mix in mixes:
|
||||
cmix = mixes[mix]
|
||||
sources = []
|
||||
n_sample = cmix.shape[1]
|
||||
model = self.model_
|
||||
trim = model.n_fft // 2
|
||||
gen_size = model.chunk_size - 2 * trim
|
||||
pad = gen_size - n_sample % gen_size
|
||||
mix_p = np.concatenate(
|
||||
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
||||
)
|
||||
mix_waves = []
|
||||
i = 0
|
||||
while i < n_sample + pad:
|
||||
waves = np.array(mix_p[:, i : i + model.chunk_size])
|
||||
mix_waves.append(waves)
|
||||
i += gen_size
|
||||
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
|
||||
with torch.no_grad():
|
||||
_ort = self.model
|
||||
spek = model.stft(mix_waves)
|
||||
if self.args.denoise:
|
||||
spec_pred = (
|
||||
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
||||
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
||||
)
|
||||
tar_waves = model.istft(torch.tensor(spec_pred))
|
||||
else:
|
||||
tar_waves = model.istft(
|
||||
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
|
||||
)
|
||||
tar_signal = (
|
||||
tar_waves[:, :, trim:-trim]
|
||||
.transpose(0, 1)
|
||||
.reshape(2, -1)
|
||||
.numpy()[:, :-pad]
|
||||
)
|
||||
|
||||
start = 0 if mix == 0 else margin_size
|
||||
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
||||
if margin_size == 0:
|
||||
end = None
|
||||
sources.append(tar_signal[:, start:end])
|
||||
|
||||
progress_bar.update(1)
|
||||
|
||||
chunked_sources.append(sources)
|
||||
_sources = np.concatenate(chunked_sources, axis=-1)
|
||||
# del self.model
|
||||
progress_bar.close()
|
||||
return _sources
|
||||
|
||||
def prediction(self, m, vocal_root, others_root, format):
|
||||
os.makedirs(vocal_root, exist_ok=True)
|
||||
os.makedirs(others_root, exist_ok=True)
|
||||
basename = os.path.basename(m)
|
||||
mix, rate = librosa.load(m, mono=False, sr=44100)
|
||||
if mix.ndim == 1:
|
||||
mix = np.asfortranarray([mix, mix])
|
||||
mix = mix.T
|
||||
sources = self.demix(mix.T)
|
||||
opt = sources[0].T
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
|
||||
)
|
||||
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
|
||||
else:
|
||||
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
|
||||
path_other = "%s/%s_others.wav" % (others_root, basename)
|
||||
sf.write(path_vocal, mix - opt, rate)
|
||||
sf.write(path_other, opt, rate)
|
||||
if os.path.exists(path_vocal):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path_vocal, path_vocal[:-4] + ".%s" % format)
|
||||
)
|
||||
if os.path.exists(path_other):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path_other, path_other[:-4] + ".%s" % format)
|
||||
)
|
||||
|
||||
|
||||
class MDXNetDereverb:
|
||||
def __init__(self, chunks, device):
|
||||
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy"
|
||||
self.shifts = 10 # 'Predict with randomised equivariant stabilisation'
|
||||
self.mixing = "min_mag" # ['default','min_mag','max_mag']
|
||||
self.chunks = chunks
|
||||
self.margin = 44100
|
||||
self.dim_t = 9
|
||||
self.dim_f = 3072
|
||||
self.n_fft = 6144
|
||||
self.denoise = True
|
||||
self.pred = Predictor(self)
|
||||
self.device = device
|
||||
|
||||
def path_audio(self, input, vocal_root, others_root, format):
|
||||
self.pred.prediction(input, vocal_root, others_root, format)
|
92
infer/modules/uvr5/modules.py
Normal file
92
infer/modules/uvr5/modules.py
Normal file
@ -0,0 +1,92 @@
|
||||
import os
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
import ffmpeg
|
||||
|
||||
from configs.config import Config
|
||||
from infer.modules.uvr5.preprocess import AudioPre, AudioPreDeEcho
|
||||
from infer.modules.uvr5.mdxnet import MDXNetDereverb
|
||||
|
||||
config = Config()
|
||||
|
||||
|
||||
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
||||
infos = []
|
||||
try:
|
||||
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
save_root_vocal = (
|
||||
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
)
|
||||
save_root_ins = (
|
||||
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
)
|
||||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||||
pre_fun = MDXNetDereverb(15, config.device)
|
||||
else:
|
||||
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
|
||||
pre_fun = func(
|
||||
agg=int(agg),
|
||||
model_path=os.path.join(os.getenv("weight_uvr5_root"), model_name + ".pth"),
|
||||
device=config.device,
|
||||
is_half=config.is_half,
|
||||
)
|
||||
if inp_root != "":
|
||||
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
||||
else:
|
||||
paths = [path.name for path in paths]
|
||||
for path in paths:
|
||||
inp_path = os.path.join(inp_root, path)
|
||||
need_reformat = 1
|
||||
done = 0
|
||||
try:
|
||||
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
||||
if (
|
||||
info["streams"][0]["channels"] == 2
|
||||
and info["streams"][0]["sample_rate"] == "44100"
|
||||
):
|
||||
need_reformat = 0
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0
|
||||
)
|
||||
done = 1
|
||||
except:
|
||||
need_reformat = 1
|
||||
traceback.print_exc()
|
||||
if need_reformat == 1:
|
||||
tmp_path = "%s/%s.reformatted.wav" % (os.path.join("tmp"), os.path.basename(inp_path))
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
||||
% (inp_path, tmp_path)
|
||||
)
|
||||
inp_path = tmp_path
|
||||
try:
|
||||
if done == 0:
|
||||
pre_fun.path_audio(
|
||||
inp_path, save_root_ins, save_root_vocal, format0
|
||||
)
|
||||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(
|
||||
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
||||
)
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(traceback.format_exc())
|
||||
yield "\n".join(infos)
|
||||
finally:
|
||||
try:
|
||||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||||
del pre_fun.pred.model
|
||||
del pre_fun.pred.model_
|
||||
else:
|
||||
del pre_fun.model
|
||||
del pre_fun
|
||||
except:
|
||||
traceback.print_exc()
|
||||
print("clean_empty_cache")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
yield "\n".join(infos)
|
||||
|
344
infer/modules/uvr5/preprocess.py
Normal file
344
infer/modules/uvr5/preprocess.py
Normal file
@ -0,0 +1,344 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
|
||||
from infer.lib.uvr5_pack.lib_v5 import spec_utils
|
||||
from infer.lib.uvr5_pack.utils import inference
|
||||
from infer.lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||||
|
||||
from infer.lib.uvr5_pack.lib_v5.nets_new import CascadedNet
|
||||
from infer.lib.uvr5_pack.lib_v5 import nets_61968KB as Nets
|
||||
|
||||
|
||||
class AudioPre:
|
||||
def __init__(self, agg, model_path, device, is_half):
|
||||
self.model_path = model_path
|
||||
self.device = device
|
||||
self.data = {
|
||||
# Processing Options
|
||||
"postprocess": False,
|
||||
"tta": False,
|
||||
# Constants
|
||||
"window_size": 512,
|
||||
"agg": agg,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
mp = ModelParameters("lib/uvr5_pack/lib_v5/modelparams/4band_v2.json")
|
||||
model = Nets.CascadedASPPNet(mp.param["bins"] * 2)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(cpk)
|
||||
model.eval()
|
||||
if is_half:
|
||||
model = model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
|
||||
self.mp = mp
|
||||
self.model = model
|
||||
|
||||
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"):
|
||||
if ins_root is None and vocal_root is None:
|
||||
return "No save root."
|
||||
name = os.path.basename(music_file)
|
||||
if ins_root is not None:
|
||||
os.makedirs(ins_root, exist_ok=True)
|
||||
if vocal_root is not None:
|
||||
os.makedirs(vocal_root, exist_ok=True)
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
bands_n = len(self.mp.param["band"])
|
||||
# print(bands_n)
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param["band"][d]
|
||||
if d == bands_n: # high-end band
|
||||
(
|
||||
X_wave[d],
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
self.mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
X_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
self.mp.param["mid_side"],
|
||||
self.mp.param["mid_side_b2"],
|
||||
self.mp.param["reverse"],
|
||||
)
|
||||
# pdb.set_trace()
|
||||
if d == bands_n and self.data["high_end_process"] != "none":
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
aggressiveness = {
|
||||
"value": aggresive_set,
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
# Postprocess
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
pred = spec_utils.mask_silence(pred, pred_inv)
|
||||
y_spec_m = pred * X_phase
|
||||
v_spec_m = X_spec_m - y_spec_m
|
||||
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||
print("%s instruments done" % name)
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
os.path.join(
|
||||
ins_root,
|
||||
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
||||
),
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
) #
|
||||
else:
|
||||
path = os.path.join(
|
||||
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
if os.path.exists(path):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path, path[:-4] + ".%s" % format)
|
||||
)
|
||||
if vocal_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
print("%s vocals done" % name)
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
os.path.join(
|
||||
vocal_root,
|
||||
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
||||
),
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
else:
|
||||
path = os.path.join(
|
||||
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
if os.path.exists(path):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path, path[:-4] + ".%s" % format)
|
||||
)
|
||||
|
||||
|
||||
class AudioPreDeEcho:
|
||||
def __init__(self, agg, model_path, device, is_half):
|
||||
self.model_path = model_path
|
||||
self.device = device
|
||||
self.data = {
|
||||
# Processing Options
|
||||
"postprocess": False,
|
||||
"tta": False,
|
||||
# Constants
|
||||
"window_size": 512,
|
||||
"agg": agg,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
mp = ModelParameters("lib/uvr5_pack/lib_v5/modelparams/4band_v3.json")
|
||||
nout = 64 if "DeReverb" in model_path else 48
|
||||
model = CascadedNet(mp.param["bins"] * 2, nout)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(cpk)
|
||||
model.eval()
|
||||
if is_half:
|
||||
model = model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
|
||||
self.mp = mp
|
||||
self.model = model
|
||||
|
||||
def _path_audio_(
|
||||
self, music_file, vocal_root=None, ins_root=None, format="flac"
|
||||
): # 3个VR模型vocal和ins是反的
|
||||
if ins_root is None and vocal_root is None:
|
||||
return "No save root."
|
||||
name = os.path.basename(music_file)
|
||||
if ins_root is not None:
|
||||
os.makedirs(ins_root, exist_ok=True)
|
||||
if vocal_root is not None:
|
||||
os.makedirs(vocal_root, exist_ok=True)
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
bands_n = len(self.mp.param["band"])
|
||||
# print(bands_n)
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param["band"][d]
|
||||
if d == bands_n: # high-end band
|
||||
(
|
||||
X_wave[d],
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
self.mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
X_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
self.mp.param["mid_side"],
|
||||
self.mp.param["mid_side_b2"],
|
||||
self.mp.param["reverse"],
|
||||
)
|
||||
# pdb.set_trace()
|
||||
if d == bands_n and self.data["high_end_process"] != "none":
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
aggressiveness = {
|
||||
"value": aggresive_set,
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
# Postprocess
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
pred = spec_utils.mask_silence(pred, pred_inv)
|
||||
y_spec_m = pred * X_phase
|
||||
v_spec_m = X_spec_m - y_spec_m
|
||||
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||
print("%s instruments done" % name)
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
os.path.join(
|
||||
ins_root,
|
||||
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
||||
),
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
) #
|
||||
else:
|
||||
path = os.path.join(
|
||||
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
if os.path.exists(path):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path, path[:-4] + ".%s" % format)
|
||||
)
|
||||
if vocal_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
print("%s vocals done" % name)
|
||||
if format in ["wav", "flac"]:
|
||||
sf.write(
|
||||
os.path.join(
|
||||
vocal_root,
|
||||
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
||||
),
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
else:
|
||||
path = os.path.join(
|
||||
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
||||
)
|
||||
sf.write(
|
||||
path,
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
self.mp.param["sr"],
|
||||
)
|
||||
if os.path.exists(path):
|
||||
os.system(
|
||||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||||
% (path, path[:-4] + ".%s" % format)
|
||||
)
|
Loading…
Reference in New Issue
Block a user