diff --git a/export_onnx.py b/export_onnx.py index 80f061b..8b62b47 100644 --- a/export_onnx.py +++ b/export_onnx.py @@ -1,36 +1,44 @@ -from infer_pack.models_onnx import SynthesizerTrnMs256NSFsid +from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM +from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO import torch -person = "Shiroha/shiroha.pth" -exported_path = "model.onnx" +if __name__ == '__main__': + MoeVS = True #模型是否为MoeVoiceStudio(原MoeSS)使用 + ModelPath = "Shiroha/shiroha.pth" #模型路径 + ExportedPath = "model.onnx" #输出路径 + hidden_channels = 256 # hidden_channels,为768Vec做准备 + cpt = torch.load(ModelPath, map_location="cpu") + cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk + print(*cpt["config"]) + test_phone = torch.rand(1, 200, hidden_channels) # hidden unit + test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) + test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) + test_pitchf = torch.rand(1, 200) # nsf基频 + test_ds = torch.LongTensor([0]) # 说话人ID + test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) -cpt = torch.load(person, map_location="cpu") -cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk -print(*cpt["config"]) -net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False) -net_g.load_state_dict(cpt["weight"], strict=False) + device = "cpu" #导出时设备(不影响使用模型) -test_phone = torch.rand(1, 200, 256) -test_phone_lengths = torch.tensor([200]).long() -test_pitch = torch.randint(size=(1 ,200),low=5,high=255) -test_pitchf = torch.rand(1, 200) -test_ds = torch.LongTensor([0]) -test_rnd = torch.rand(1, 192, 200) -input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] -output_names = ["audio", ] -device="cpu" -torch.onnx.export(net_g, + if MoeVS: + net_g = SynthesizerTrnMs256NSFsidM(*cpt["config"], is_half=False) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) + net_g.load_state_dict(cpt["weight"], strict=False) + input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] + output_names = [ + "audio", + ] + torch.onnx.export( + net_g, ( test_phone.to(device), test_phone_lengths.to(device), test_pitch.to(device), test_pitchf.to(device), test_ds.to(device), - test_rnd.to(device) + test_rnd.to(device), ), - exported_path, + ExportedPath, dynamic_axes={ "phone": [1], "pitch": [1], @@ -41,4 +49,33 @@ torch.onnx.export(net_g, opset_version=16, verbose=False, input_names=input_names, - output_names=output_names) \ No newline at end of file + output_names=output_names, + ) + else: + net_g = SynthesizerTrnMs256NSFsidO(*cpt["config"], is_half=False) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) + net_g.load_state_dict(cpt["weight"], strict=False) + input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"] + output_names = [ + "audio", + ] + torch.onnx.export( + net_g, + ( + test_phone.to(device), + test_phone_lengths.to(device), + test_pitch.to(device), + test_pitchf.to(device), + test_ds.to(device), + ), + ExportedPath, + dynamic_axes={ + "phone": [1], + "pitch": [1], + "pitchf": [1], + }, + do_constant_folding=False, + opset_version=16, + verbose=False, + input_names=input_names, + output_names=output_names, + ) \ No newline at end of file diff --git a/infer-web.py b/infer-web.py index 751bf0f..771a65c 100644 --- a/infer-web.py +++ b/infer-web.py @@ -3,132 +3,259 @@ import threading from time import sleep from subprocess import Popen from time import sleep -import torch, os,traceback,sys,warnings,shutil,numpy as np +import torch, os, traceback, sys, warnings, shutil, numpy as np import faiss -#判断是否有能用来训练和加速推理的N卡 -ncpu=cpu_count() -ngpu=torch.cuda.device_count() -gpu_infos=[] -if(torch.cuda.is_available()==False or ngpu==0):if_gpu_ok=False + +now_dir = os.getcwd() +sys.path.append(now_dir) +tmp = os.path.join(now_dir, "TEMP") +shutil.rmtree(tmp, ignore_errors=True) +os.makedirs(tmp, exist_ok=True) +os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) +os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) +os.environ["TEMP"] = tmp +warnings.filterwarnings("ignore") +torch.manual_seed(114514) +from i18n import I18nAuto + +i18n = I18nAuto() +# 判断是否有能用来训练和加速推理的N卡 +ncpu = cpu_count() +ngpu = torch.cuda.device_count() +gpu_infos = [] +if (not torch.cuda.is_available()) or ngpu == 0: + if_gpu_ok = False else: if_gpu_ok = False for i in range(ngpu): - gpu_name=torch.cuda.get_device_name(i) - if("16"in gpu_name or "MX"in gpu_name):continue - if("10"in gpu_name or "20"in gpu_name or "30"in gpu_name or "40"in gpu_name or "A50"in gpu_name.upper() or "70"in gpu_name or "80"in gpu_name or "90"in gpu_name or "M4"in gpu_name or "T4"in gpu_name or "TITAN"in gpu_name.upper()):#A10#A100#V100#A40#P40#M40#K80 - if_gpu_ok=True#至少有一张能用的N卡 - gpu_infos.append("%s\t%s"%(i,gpu_name)) -gpu_info="\n".join(gpu_infos)if if_gpu_ok==True and len(gpu_infos)>0 else "很遗憾您这没有能用的显卡来支持您训练" -gpus="-".join([i[0]for i in gpu_infos]) -now_dir=os.getcwd() -sys.path.append(now_dir) -tmp=os.path.join(now_dir,"TEMP") -shutil.rmtree(tmp,ignore_errors=True) -os.makedirs(tmp,exist_ok=True) -os.makedirs(os.path.join(now_dir,"logs"),exist_ok=True) -os.makedirs(os.path.join(now_dir,"weights"),exist_ok=True) -os.environ["TEMP"]=tmp -warnings.filterwarnings("ignore") -torch.manual_seed(114514) + gpu_name = torch.cuda.get_device_name(i) + if ("16" in gpu_name and "V100" not in gpu_name) or "MX" in gpu_name: + continue + if ( + "10" in gpu_name + or "20" in gpu_name + or "30" in gpu_name + or "40" in gpu_name + or "A2" in gpu_name.upper() + or "A3" in gpu_name.upper() + or "A4" in gpu_name.upper() + or "P4" in gpu_name.upper() + or "A50" in gpu_name.upper() + or "70" in gpu_name + or "80" in gpu_name + or "90" in gpu_name + or "M4" in gpu_name + or "T4" in gpu_name + or "TITAN" in gpu_name.upper() + ): # A10#A100#V100#A40#P40#M40#K80 + if_gpu_ok = True # 至少有一张能用的N卡 + gpu_infos.append("%s\t%s" % (i, gpu_name)) +gpu_info = ( + "\n".join(gpu_infos) + if if_gpu_ok == True and len(gpu_infos) > 0 + else "很遗憾您这没有能用的显卡来支持您训练" +) +gpus = "-".join([i[0] for i in gpu_infos]) from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono from scipy.io import wavfile from fairseq import checkpoint_utils import gradio as gr import logging from vc_infer_pipeline import VC -from config import is_half,device,is_half,python_cmd,listen_port,iscolab,noparallel +from config import ( + is_half, + device, + python_cmd, + listen_port, + iscolab, + noparallel, + noautoopen, +) from infer_uvr5 import _audio_pre_ from my_utils import load_audio -from train.process_ckpt import show_info,change_info,merge,extract_small_model +from train.process_ckpt import show_info, change_info, merge, extract_small_model + # from trainset_preprocess_pipeline import PreProcess -logging.getLogger('numba').setLevel(logging.WARNING) +logging.getLogger("numba").setLevel(logging.WARNING) + class ToolButton(gr.Button, gr.components.FormComponent): """Small button with single emoji as text, fits inside gradio forms""" + def __init__(self, **kwargs): super().__init__(variant="tool", **kwargs) + def get_block_name(self): return "button" -hubert_model=None + +hubert_model = None + + def load_hubert(): global hubert_model - models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) + models, _, _ = checkpoint_utils.load_model_ensemble_and_task( + ["hubert_base.pt"], + suffix="", + ) hubert_model = models[0] hubert_model = hubert_model.to(device) - if(is_half):hubert_model = hubert_model.half() - else:hubert_model = hubert_model.float() + if is_half: + hubert_model = hubert_model.half() + else: + hubert_model = hubert_model.float() hubert_model.eval() -weight_root="weights" -weight_uvr5_root="uvr5_weights" -names=[] -for name in os.listdir(weight_root): - if name.endswith(".pth"): names.append(name) -uvr5_names=[] -for name in os.listdir(weight_uvr5_root): - if name.endswith(".pth"): uvr5_names.append(name.replace(".pth","")) -def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,file_big_npy,index_rate):#spk_item, input_audio0, vc_transform0,f0_file,f0method0 - global tgt_sr,net_g,vc,hubert_model - if input_audio is None:return "You need to upload an audio", None +weight_root = "weights" +weight_uvr5_root = "uvr5_weights" +names = [] +for name in os.listdir(weight_root): + if name.endswith(".pth"): + names.append(name) +uvr5_names = [] +for name in os.listdir(weight_uvr5_root): + if name.endswith(".pth"): + uvr5_names.append(name.replace(".pth", "")) + + + +def vc_single( + sid, + input_audio, + f0_up_key, + f0_file, + f0_method, + file_index, + file_big_npy, + index_rate, +): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 + global tgt_sr, net_g, vc, hubert_model + if input_audio is None: + return "You need to upload an audio", None f0_up_key = int(f0_up_key) try: - audio=load_audio(input_audio,16000) + audio = load_audio(input_audio, 16000) times = [0, 0, 0] - if(hubert_model==None):load_hubert() + if hubert_model == None: + load_hubert() if_f0 = cpt.get("f0", 1) - audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file) - print(times) + file_index = ( + file_index.strip(" ") + .strip('"') + .strip("\n") + .strip('"') + .strip(" ") + .replace("trained", "added") + ) # 防止小白写错,自动帮他替换掉 + file_big_npy = ( + file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + ) + audio_opt = vc.pipeline( + hubert_model, + net_g, + sid, + audio, + times, + f0_up_key, + f0_method, + file_index, + file_big_npy, + index_rate, + if_f0, + f0_file=f0_file, + ) + print( + "npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep="" + ) return "Success", (tgt_sr, audio_opt) except: - info=traceback.format_exc() + info = traceback.format_exc() print(info) - return info,(None,None) + return info, (None, None) -def vc_multi(sid,dir_path,opt_root,paths,f0_up_key,f0_method,file_index,file_big_npy,index_rate): + +def vc_multi( + sid, + dir_path, + opt_root, + paths, + f0_up_key, + f0_method, + file_index, + file_big_npy, + index_rate, +): try: - dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格 - opt_root=opt_root.strip(" ") + dir_path = ( + dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + ) # 防止小白拷路径头尾带了空格和"和回车 + opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") os.makedirs(opt_root, exist_ok=True) try: - if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)] - else:paths=[path.name for path in paths] + if dir_path != "": + paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] + else: + paths = [path.name for path in paths] except: traceback.print_exc() paths = [path.name for path in paths] - infos=[] + infos = [] for path in paths: - info,opt=vc_single(sid,path,f0_up_key,None,f0_method,file_index,file_big_npy,index_rate) - if(info=="Success"): + info, opt = vc_single( + sid, + path, + f0_up_key, + None, + f0_method, + file_index, + file_big_npy, + index_rate, + ) + if info == "Success": try: - tgt_sr,audio_opt=opt - wavfile.write("%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt) + tgt_sr, audio_opt = opt + wavfile.write( + "%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt + ) except: - info=traceback.format_exc() - infos.append("%s->%s"%(os.path.basename(path),info)) + info = traceback.format_exc() + infos.append("%s->%s" % (os.path.basename(path), info)) yield "\n".join(infos) yield "\n".join(infos) except: yield traceback.format_exc() -def uvr(model_name,inp_root,save_root_vocal,paths,save_root_ins): + +def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins): infos = [] try: - inp_root = inp_root.strip(" ").strip("\n") - save_root_vocal = save_root_vocal.strip(" ").strip("\n") - save_root_ins = save_root_ins.strip(" ").strip("\n") - pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half) - if (inp_root != ""):paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] - else:paths = [path.name for path in paths] + inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + save_root_vocal = ( + save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + ) + save_root_ins = ( + save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + ) + pre_fun = _audio_pre_( + model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), + device=device, + is_half=is_half, + ) + if inp_root != "": + paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] + else: + paths = [path.name for path in paths] for name in paths: - inp_path=os.path.join(inp_root,name) + inp_path = os.path.join(inp_root, name) try: - pre_fun._path_audio_(inp_path , save_root_ins,save_root_vocal) - infos.append("%s->Success"%(os.path.basename(inp_path))) + pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal) + infos.append("%s->Success" % (os.path.basename(inp_path))) yield "\n".join(infos) except: - infos.append("%s->%s" % (os.path.basename(inp_path),traceback.format_exc())) + infos.append( + "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) + ) yield "\n".join(infos) except: infos.append(traceback.format_exc()) @@ -140,505 +267,1201 @@ def uvr(model_name,inp_root,save_root_vocal,paths,save_root_ins): except: traceback.print_exc() print("clean_empty_cache") - torch.cuda.empty_cache() + if torch.cuda.is_available(): + torch.cuda.empty_cache() yield "\n".join(infos) -#一个选项卡全局只能有一个音色 + +# 一个选项卡全局只能有一个音色 def get_vc(sid): - global n_spk,tgt_sr,net_g,vc,cpt - if(sid==[]): + global n_spk, tgt_sr, net_g, vc, cpt + if sid == []: global hubert_model - if (hubert_model != None): # 考虑到轮询,需要加个判断看是否 sid 是由有模型切换到无模型的 + if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 print("clean_empty_cache") - del net_g, n_spk, vc, hubert_model,tgt_sr#,cpt - hubert_model = net_g=n_spk=vc=hubert_model=tgt_sr=None - torch.cuda.empty_cache() + del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt + hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None + if torch.cuda.is_available(): + torch.cuda.empty_cache() ###楼下不这么折腾清理不干净 if_f0 = cpt.get("f0", 1) - if (if_f0 == 1): + if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) - del net_g,cpt - torch.cuda.empty_cache() - cpt=None + del net_g, cpt + if torch.cuda.is_available(): + torch.cuda.empty_cache() + cpt = None return {"visible": False, "__type__": "update"} person = "%s/%s" % (weight_root, sid) - print("loading %s"%person) + print("loading %s" % person) cpt = torch.load(person, map_location="cpu") tgt_sr = cpt["config"][-1] - cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk - if_f0=cpt.get("f0",1) - if(if_f0==1): + cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk + if_f0 = cpt.get("f0", 1) + if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) del net_g.enc_q - print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩 + print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩 net_g.eval().to(device) - if (is_half):net_g = net_g.half() - else:net_g = net_g.float() + if is_half: + net_g = net_g.half() + else: + net_g = net_g.float() vc = VC(tgt_sr, device, is_half) - n_spk=cpt["config"][-3] - return {"visible": True,"maximum": n_spk, "__type__": "update"} + n_spk = cpt["config"][-3] + return {"visible": True, "maximum": n_spk, "__type__": "update"} + def change_choices(): - names=[] + names = [] for name in os.listdir(weight_root): - if name.endswith(".pth"): names.append(name) + if name.endswith(".pth"): + names.append(name) return {"choices": sorted(names), "__type__": "update"} -def clean():return {"value": "", "__type__": "update"} -def change_f0(if_f0_3,sr2):#np7, f0method8,pretrained_G14,pretrained_D15 - if(if_f0_3=="是"):return {"visible": True, "__type__": "update"},{"visible": True, "__type__": "update"},"pretrained/f0G%s.pth"%sr2,"pretrained/f0D%s.pth"%sr2 - return {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"},"pretrained/G%s.pth"%sr2,"pretrained/D%s.pth"%sr2 -sr_dict={ - "32k":32000, - "40k":40000, - "48k":48000, + +def clean(): + return {"value": "", "__type__": "update"} + + +def change_f0(if_f0_3, sr2): # np7, f0method8,pretrained_G14,pretrained_D15 + if if_f0_3 == "是": + return ( + {"visible": True, "__type__": "update"}, + {"visible": True, "__type__": "update"}, + "pretrained/f0G%s.pth" % sr2, + "pretrained/f0D%s.pth" % sr2, + ) + return ( + {"visible": False, "__type__": "update"}, + {"visible": False, "__type__": "update"}, + "pretrained/G%s.pth" % sr2, + "pretrained/D%s.pth" % sr2, + ) + + +sr_dict = { + "32k": 32000, + "40k": 40000, + "48k": 48000, } -def if_done(done,p): + +def if_done(done, p): while 1: - if(p.poll()==None):sleep(0.5) - else:break - done[0]=True + if p.poll() == None: + sleep(0.5) + else: + break + done[0] = True -def if_done_multi(done,ps): +def if_done_multi(done, ps): while 1: - #poll==None代表进程未结束 - #只要有一个进程未结束都不停 - flag=1 + # poll==None代表进程未结束 + # 只要有一个进程未结束都不停 + flag = 1 for p in ps: - if(p.poll()==None): + if p.poll() == None: flag = 0 sleep(0.5) break - if(flag==1):break - done[0]=True + if flag == 1: + break + done[0] = True -def preprocess_dataset(trainset_dir,exp_dir,sr,n_p=ncpu): - sr=sr_dict[sr] - os.makedirs("%s/logs/%s"%(now_dir,exp_dir),exist_ok=True) - f = open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir), "w") + +def preprocess_dataset(trainset_dir, exp_dir, sr, n_p=ncpu): + sr = sr_dict[sr] + os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) + f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") f.close() - cmd=python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "%(trainset_dir,sr,n_p,now_dir,exp_dir)+str(noparallel) + cmd = ( + python_cmd + + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " + % (trainset_dir, sr, n_p, now_dir, exp_dir) + + str(noparallel) + ) print(cmd) - p = Popen(cmd, shell=True)#, stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir - ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 - done=[False] - threading.Thread(target=if_done,args=(done,p,)).start() - while(1): - with open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir),"r")as f:yield(f.read()) + p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done, + args=( + done, + p, + ), + ).start() + while 1: + with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: + yield (f.read()) sleep(1) - if(done[0]==True):break - with open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir), "r")as f:log = f.read() + if done[0] == True: + break + with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: + log = f.read() print(log) yield log -#but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) -def extract_f0_feature(gpus,n_p,f0method,if_f0,exp_dir): - gpus=gpus.split("-") - os.makedirs("%s/logs/%s"%(now_dir,exp_dir),exist_ok=True) - f = open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "w") + + +# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) +def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir): + gpus = gpus.split("-") + os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) + f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") f.close() - if(if_f0=="是"): - cmd=python_cmd + " extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir,n_p,f0method) + if if_f0 == "是": + cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( + now_dir, + exp_dir, + n_p, + f0method, + ) print(cmd) - p = Popen(cmd, shell=True,cwd=now_dir)#, stdin=PIPE, stdout=PIPE,stderr=PIPE - ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 - done=[False] - threading.Thread(target=if_done,args=(done,p,)).start() - while(1): - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir),"r")as f:yield(f.read()) + p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + done = [False] + threading.Thread( + target=if_done, + args=( + done, + p, + ), + ).start() + while 1: + with open( + "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" + ) as f: + yield (f.read()) sleep(1) - if(done[0]==True):break - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:log = f.read() + if done[0] == True: + break + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + log = f.read() print(log) yield log ####对不同part分别开多进程 - ''' + """ n_part=int(sys.argv[1]) i_part=int(sys.argv[2]) i_gpu=sys.argv[3] exp_dir=sys.argv[4] os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) - ''' - leng=len(gpus) - ps=[] - for idx,n_g in enumerate(gpus): - cmd=python_cmd + " extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir) + """ + leng = len(gpus) + ps = [] + for idx, n_g in enumerate(gpus): + cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % ( + device, + leng, + idx, + n_g, + now_dir, + exp_dir, + ) print(cmd) - p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir ps.append(p) - ###煞笔gr,popen read都非得全跑完了再一次性读取,不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 + ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 done = [False] - threading.Thread(target=if_done_multi, args=(done, ps,)).start() - while (1): - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:yield (f.read()) + threading.Thread( + target=if_done_multi, + args=( + done, + ps, + ), + ).start() + while 1: + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + yield (f.read()) sleep(1) - if (done[0] == True): break - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir), "r")as f:log = f.read() + if done[0] == True: + break + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: + log = f.read() print(log) yield log -def change_sr2(sr2,if_f0_3): - if(if_f0_3=="是"):return "pretrained/f0G%s.pth"%sr2,"pretrained/f0D%s.pth"%sr2 - else:return "pretrained/G%s.pth"%sr2,"pretrained/D%s.pth"%sr2 -#but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) -def click_train(exp_dir1,sr2,if_f0_3,spk_id5,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17): - #生成filelist - exp_dir="%s/logs/%s"%(now_dir,exp_dir1) - os.makedirs(exp_dir,exist_ok=True) - gt_wavs_dir="%s/0_gt_wavs"%(exp_dir) - co256_dir="%s/3_feature256"%(exp_dir) - if(if_f0_3=="是"): + + +def change_sr2(sr2, if_f0_3): + if if_f0_3 == "是": + return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2 + else: + return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2 + + +# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) +def click_train( + exp_dir1, + sr2, + if_f0_3, + spk_id5, + save_epoch10, + total_epoch11, + batch_size12, + if_save_latest13, + pretrained_G14, + pretrained_D15, + gpus16, + if_cache_gpu17, +): + # 生成filelist + exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) + os.makedirs(exp_dir, exist_ok=True) + gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) + co256_dir = "%s/3_feature256" % (exp_dir) + if if_f0_3 == "是": f0_dir = "%s/2a_f0" % (exp_dir) - f0nsf_dir="%s/2b-f0nsf"%(exp_dir) - names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])&set([name.split(".")[0]for name in os.listdir(f0_dir)])&set([name.split(".")[0]for name in os.listdir(f0nsf_dir)]) + f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) + names = ( + set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) + & set([name.split(".")[0] for name in os.listdir(co256_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) + ) else: - names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)]) - opt=[] + names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( + [name.split(".")[0] for name in os.listdir(co256_dir)] + ) + opt = [] for name in names: - if (if_f0_3 == "是"): - opt.append("%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,f0_dir.replace("\\","\\\\"),name,f0nsf_dir.replace("\\","\\\\"),name,spk_id5)) + if if_f0_3 == "是": + opt.append( + "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + co256_dir.replace("\\", "\\\\"), + name, + f0_dir.replace("\\", "\\\\"), + name, + f0nsf_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) else: - opt.append("%s/%s.wav|%s/%s.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,spk_id5)) - with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt)) - print("write filelist done") - #生成config#无需生成config - # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" - print("use gpus:",gpus16) - if gpus16: - cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0) + opt.append( + "%s/%s.wav|%s/%s.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + co256_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) + if if_f0_3 == "是": + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" + % (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5) + ) else: - cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0) + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s" + % (now_dir, sr2, now_dir, spk_id5) + ) + with open("%s/filelist.txt" % exp_dir, "w") as f: + f.write("\n".join(opt)) + print("write filelist done") + # 生成config#无需生成config + # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" + print("use gpus:", gpus16) + if gpus16: + cmd = ( + python_cmd + + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" + % ( + exp_dir1, + sr2, + 1 if if_f0_3 == "是" else 0, + batch_size12, + gpus16, + total_epoch11, + save_epoch10, + pretrained_G14, + pretrained_D15, + 1 if if_save_latest13 == "是" else 0, + 1 if if_cache_gpu17 == "是" else 0, + ) + ) + else: + cmd = ( + python_cmd + + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" + % ( + exp_dir1, + sr2, + 1 if if_f0_3 == "是" else 0, + batch_size12, + total_epoch11, + save_epoch10, + pretrained_G14, + pretrained_D15, + 1 if if_save_latest13 == "是" else 0, + 1 if if_cache_gpu17 == "是" else 0, + ) + ) print(cmd) p = Popen(cmd, shell=True, cwd=now_dir) p.wait() - return "训练结束,您可查看控制台训练日志或实验文件夹下的train.log" + return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" + + # but4.click(train_index, [exp_dir1], info3) def train_index(exp_dir1): - exp_dir="%s/logs/%s"%(now_dir,exp_dir1) - os.makedirs(exp_dir,exist_ok=True) - feature_dir="%s/3_feature256"%(exp_dir) - if(os.path.exists(feature_dir)==False):return "请先进行特征提取!" - listdir_res=list(os.listdir(feature_dir)) - if(len(listdir_res)==0):return "请先进行特征提取!" + exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) + os.makedirs(exp_dir, exist_ok=True) + feature_dir = "%s/3_feature256" % (exp_dir) + if os.path.exists(feature_dir) == False: + return "请先进行特征提取!" + listdir_res = list(os.listdir(feature_dir)) + if len(listdir_res) == 0: + return "请先进行特征提取!" npys = [] for name in sorted(listdir_res): phone = np.load("%s/%s" % (feature_dir, name)) npys.append(phone) big_npy = np.concatenate(npys, 0) - np.save("%s/total_fea.npy"%exp_dir, big_npy) + np.save("%s/total_fea.npy" % exp_dir, big_npy) n_ivf = big_npy.shape[0] // 39 - infos=[] - infos.append("%s,%s"%(big_npy.shape,n_ivf)) + infos = [] + infos.append("%s,%s" % (big_npy.shape, n_ivf)) yield "\n".join(infos) - index = faiss.index_factory(256, "IVF%s,Flat"%n_ivf) + index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf) infos.append("training") yield "\n".join(infos) index_ivf = faiss.extract_index_ivf(index) # - index_ivf.nprobe = int(np.power(n_ivf,0.3)) + index_ivf.nprobe = int(np.power(n_ivf, 0.3)) index.train(big_npy) - faiss.write_index(index, '%s/trained_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe)) + faiss.write_index( + index, + "%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), + ) infos.append("adding") yield "\n".join(infos) index.add(big_npy) - faiss.write_index(index, '%s/added_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe)) - infos.append("成功构建索引,added_IVF%s_Flat_nprobe_%s.index"%(n_ivf,index_ivf.nprobe)) + faiss.write_index( + index, + "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), + ) + infos.append("成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)) yield "\n".join(infos) -#but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) -def train1key(exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17): - infos=[] + + +# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) +def train1key( + exp_dir1, + sr2, + if_f0_3, + trainset_dir4, + spk_id5, + gpus6, + np7, + f0method8, + save_epoch10, + total_epoch11, + batch_size12, + if_save_latest13, + pretrained_G14, + pretrained_D15, + gpus16, + if_cache_gpu17, +): + infos = [] + def get_info_str(strr): infos.append(strr) return "\n".join(infos) - os.makedirs("%s/logs/%s"%(now_dir,exp_dir1),exist_ok=True) + + os.makedirs("%s/logs/%s" % (now_dir, exp_dir1), exist_ok=True) #########step1:处理数据 - open("%s/logs/%s/preprocess.log"%(now_dir,exp_dir1), "w").close() - cmd=python_cmd + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "%(trainset_dir4,sr_dict[sr2],ncpu,now_dir,exp_dir1)+str(noparallel) + open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "w").close() + cmd = ( + python_cmd + + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " + % (trainset_dir4, sr_dict[sr2], ncpu, now_dir, exp_dir1) + + str(noparallel) + ) yield get_info_str("step1:正在处理数据") yield get_info_str(cmd) p = Popen(cmd, shell=True) p.wait() - with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r")as f: print(f.read()) + with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r") as f: + print(f.read()) #########step2a:提取音高 open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w") - if(if_f0_3=="是"): + if if_f0_3 == "是": yield get_info_str("step2a:正在提取音高") - cmd=python_cmd + " extract_f0_print.py %s/logs/%s %s %s"%(now_dir,exp_dir1,np7,f0method8) + cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( + now_dir, + exp_dir1, + np7, + f0method8, + ) yield get_info_str(cmd) - p = Popen(cmd, shell=True,cwd=now_dir) + p = Popen(cmd, shell=True, cwd=now_dir) p.wait() - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir1), "r")as f:print(f.read()) - else:yield get_info_str("step2a:无需提取音高") + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f: + print(f.read()) + else: + yield get_info_str("step2a:无需提取音高") #######step2b:提取特征 yield get_info_str("step2b:正在提取特征") - gpus=gpus16.split("-") - leng=len(gpus) - ps=[] - for idx,n_g in enumerate(gpus): - cmd=python_cmd + " extract_feature_print.py %s %s %s %s/logs/%s"%(leng,idx,n_g,now_dir,exp_dir1) + gpus = gpus16.split("-") + leng = len(gpus) + ps = [] + for idx, n_g in enumerate(gpus): + cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % ( + device, + leng, + idx, + n_g, + now_dir, + exp_dir1, + ) yield get_info_str(cmd) - p = Popen(cmd, shell=True, cwd=now_dir)#, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir + p = Popen( + cmd, shell=True, cwd=now_dir + ) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir ps.append(p) - for p in ps:p.wait() - with open("%s/logs/%s/extract_f0_feature.log"%(now_dir,exp_dir1), "r")as f:print(f.read()) + for p in ps: + p.wait() + with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f: + print(f.read()) #######step3a:训练模型 yield get_info_str("step3a:正在训练模型") - #生成filelist - exp_dir="%s/logs/%s"%(now_dir,exp_dir1) - gt_wavs_dir="%s/0_gt_wavs"%(exp_dir) - co256_dir="%s/3_feature256"%(exp_dir) - if(if_f0_3=="是"): + # 生成filelist + exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) + gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) + co256_dir = "%s/3_feature256" % (exp_dir) + if if_f0_3 == "是": f0_dir = "%s/2a_f0" % (exp_dir) - f0nsf_dir="%s/2b-f0nsf"%(exp_dir) - names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)])&set([name.split(".")[0]for name in os.listdir(f0_dir)])&set([name.split(".")[0]for name in os.listdir(f0nsf_dir)]) + f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) + names = ( + set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) + & set([name.split(".")[0] for name in os.listdir(co256_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0_dir)]) + & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) + ) else: - names=set([name.split(".")[0]for name in os.listdir(gt_wavs_dir)])&set([name.split(".")[0]for name in os.listdir(co256_dir)]) - opt=[] + names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( + [name.split(".")[0] for name in os.listdir(co256_dir)] + ) + opt = [] for name in names: - if (if_f0_3 == "是"): - opt.append("%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,f0_dir.replace("\\","\\\\"),name,f0nsf_dir.replace("\\","\\\\"),name,spk_id5)) + if if_f0_3 == "是": + opt.append( + "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + co256_dir.replace("\\", "\\\\"), + name, + f0_dir.replace("\\", "\\\\"), + name, + f0nsf_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) else: - opt.append("%s/%s.wav|%s/%s.npy|%s"%(gt_wavs_dir.replace("\\","\\\\"),name,co256_dir.replace("\\","\\\\"),name,spk_id5)) - with open("%s/filelist.txt"%exp_dir,"w")as f:f.write("\n".join(opt)) + opt.append( + "%s/%s.wav|%s/%s.npy|%s" + % ( + gt_wavs_dir.replace("\\", "\\\\"), + name, + co256_dir.replace("\\", "\\\\"), + name, + spk_id5, + ) + ) + if if_f0_3 == "是": + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" + % (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5) + ) + else: + opt.append( + "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s" + % (now_dir, sr2, now_dir, spk_id5) + ) + with open("%s/filelist.txt" % exp_dir, "w") as f: + f.write("\n".join(opt)) yield get_info_str("write filelist done") if gpus16: - cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,gpus16,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0) + cmd = ( + python_cmd + + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s" + % ( + exp_dir1, + sr2, + 1 if if_f0_3 == "是" else 0, + batch_size12, + gpus16, + total_epoch11, + save_epoch10, + pretrained_G14, + pretrained_D15, + 1 if if_save_latest13 == "是" else 0, + 1 if if_cache_gpu17 == "是" else 0, + ) + ) else: - cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" % (exp_dir1,sr2,1 if if_f0_3=="是"else 0,batch_size12,total_epoch11,save_epoch10,pretrained_G14,pretrained_D15,1 if if_save_latest13=="是"else 0,1 if if_cache_gpu17=="是"else 0) + cmd = ( + python_cmd + + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s" + % ( + exp_dir1, + sr2, + 1 if if_f0_3 == "是" else 0, + batch_size12, + total_epoch11, + save_epoch10, + pretrained_G14, + pretrained_D15, + 1 if if_save_latest13 == "是" else 0, + 1 if if_cache_gpu17 == "是" else 0, + ) + ) yield get_info_str(cmd) p = Popen(cmd, shell=True, cwd=now_dir) p.wait() - yield get_info_str("训练结束,您可查看控制台训练日志或实验文件夹下的train.log") + yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log") #######step3b:训练索引 - feature_dir="%s/3_feature256"%(exp_dir) + feature_dir = "%s/3_feature256" % (exp_dir) npys = [] - listdir_res=list(os.listdir(feature_dir)) + listdir_res = list(os.listdir(feature_dir)) for name in sorted(listdir_res): phone = np.load("%s/%s" % (feature_dir, name)) npys.append(phone) big_npy = np.concatenate(npys, 0) - np.save("%s/total_fea.npy"%exp_dir, big_npy) + np.save("%s/total_fea.npy" % exp_dir, big_npy) n_ivf = big_npy.shape[0] // 39 - yield get_info_str("%s,%s"%(big_npy.shape,n_ivf)) - index = faiss.index_factory(256, "IVF%s,Flat"%n_ivf) + yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) + index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf) yield get_info_str("training index") index_ivf = faiss.extract_index_ivf(index) # - index_ivf.nprobe = int(np.power(n_ivf,0.3)) + index_ivf.nprobe = int(np.power(n_ivf, 0.3)) index.train(big_npy) - faiss.write_index(index, '%s/trained_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe)) + faiss.write_index( + index, + "%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), + ) yield get_info_str("adding index") index.add(big_npy) - faiss.write_index(index, '%s/added_IVF%s_Flat_nprobe_%s.index'%(exp_dir,n_ivf,index_ivf.nprobe)) - yield get_info_str("成功构建索引,added_IVF%s_Flat_nprobe_%s.index"%(n_ivf,index_ivf.nprobe)) + faiss.write_index( + index, + "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe), + ) + yield get_info_str( + "成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe) + ) yield get_info_str("全流程结束!") + # ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) def change_info_(ckpt_path): - if(os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path),"train.log"))==False):return {"__type__": "update"},{"__type__": "update"} + if ( + os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")) + == False + ): + return {"__type__": "update"}, {"__type__": "update"} try: - with open(ckpt_path.replace(os.path.basename(ckpt_path),"train.log"),"r")as f: - info=eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) - sr,f0=info["sample_rate"],info["if_f0"] - return sr,str(f0) + with open( + ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" + ) as f: + info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) + sr, f0 = info["sample_rate"], info["if_f0"] + return sr, str(f0) except: traceback.print_exc() return {"__type__": "update"}, {"__type__": "update"} +from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM +from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO +def export_onnx(ModelPath, ExportedPath, MoeVS=True): + hidden_channels = 256 # hidden_channels,为768Vec做准备 + cpt = torch.load(ModelPath, map_location="cpu") + cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk + print(*cpt["config"]) + + test_phone = torch.rand(1, 200, hidden_channels) # hidden unit + test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) + test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) + test_pitchf = torch.rand(1, 200) # nsf基频 + test_ds = torch.LongTensor([0]) # 说话人ID + test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) + + device = "cpu" #导出时设备(不影响使用模型) + + if MoeVS: + net_g = SynthesizerTrnMs256NSFsidM(*cpt["config"], is_half=False) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) + net_g.load_state_dict(cpt["weight"], strict=False) + input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] + output_names = [ + "audio", + ] + torch.onnx.export( + net_g, + ( + test_phone.to(device), + test_phone_lengths.to(device), + test_pitch.to(device), + test_pitchf.to(device), + test_ds.to(device), + test_rnd.to(device), + ), + ExportedPath, + dynamic_axes={ + "phone": [1], + "pitch": [1], + "pitchf": [1], + "rnd": [2], + }, + do_constant_folding=False, + opset_version=16, + verbose=False, + input_names=input_names, + output_names=output_names, + ) + else: + net_g = SynthesizerTrnMs256NSFsidO(*cpt["config"], is_half=False) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) + net_g.load_state_dict(cpt["weight"], strict=False) + input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"] + output_names = [ + "audio", + ] + torch.onnx.export( + net_g, + ( + test_phone.to(device), + test_phone_lengths.to(device), + test_pitch.to(device), + test_pitchf.to(device), + test_ds.to(device), + ), + ExportedPath, + dynamic_axes={ + "phone": [1], + "pitch": [1], + "pitchf": [1], + }, + do_constant_folding=False, + opset_version=16, + verbose=False, + input_names=input_names, + output_names=output_names, + ) + return "Finished" + with gr.Blocks() as app: - gr.Markdown(value=""" - 本软件以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
- 如不认可该条款,则不能使用或引用软件包内任何代码和文件。详见根目录"使用需遵守的协议-LICENSE.txt"。 - """) + gr.Markdown( + value=i18n( + "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录使用需遵守的协议-LICENSE.txt." + ) + ) with gr.Tabs(): - with gr.TabItem("模型推理"): + with gr.TabItem(i18n("模型推理")): with gr.Row(): - sid0 = gr.Dropdown(label="推理音色", choices=sorted(names)) - refresh_button = gr.Button("刷新音色列表", variant="primary") - refresh_button.click( - fn=change_choices, - inputs=[], - outputs=[sid0] - ) - clean_button = gr.Button("卸载音色省显存", variant="primary") - spk_item = gr.Slider(minimum=0, maximum=2333, step=1, label='请选择说话人id', value=0, visible=False, interactive=True) - clean_button.click( - fn=clean, - inputs=[], - outputs=[sid0] + sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) + refresh_button = gr.Button(i18n("刷新音色列表"), variant="primary") + refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0]) + clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") + spk_item = gr.Slider( + minimum=0, + maximum=2333, + step=1, + label=i18n("请选择说话人id"), + value=0, + visible=False, + interactive=True, ) + clean_button.click(fn=clean, inputs=[], outputs=[sid0]) sid0.change( fn=get_vc, inputs=[sid0], outputs=[spk_item], ) with gr.Group(): - gr.Markdown(value=""" - 男转女推荐+12key,女转男推荐-12key,如果音域爆炸导致音色失真也可以自己调整到合适音域。 - """) + gr.Markdown( + value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") + ) with gr.Row(): with gr.Column(): - vc_transform0 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=0) - input_audio0 = gr.Textbox(label="输入待处理音频文件路径(默认是正确格式示例)",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs\冬之花clip1.wav") - f0method0=gr.Radio(label="选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比", choices=["pm","harvest"],value="pm", interactive=True) + vc_transform0 = gr.Number( + label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 + ) + input_audio0 = gr.Textbox( + label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), + value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs\\冬之花clip1.wav", + ) + f0method0 = gr.Radio( + label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"), + choices=["pm", "harvest"], + value="pm", + interactive=True, + ) with gr.Column(): - file_index1 = gr.Textbox(label="特征检索库文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", interactive=True) - file_big_npy1 = gr.Textbox(label="特征文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\total_fea.npy", interactive=True) - index_rate1 = gr.Slider(minimum=0, maximum=1,label='检索特征占比', value=1,interactive=True) - f0_file = gr.File(label="F0曲线文件,可选,一行一个音高,代替默认F0及升降调") - but0=gr.Button("转换", variant="primary") + file_index1 = gr.Textbox( + label=i18n("特征检索库文件路径"), + value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", + interactive=True, + ) + file_big_npy1 = gr.Textbox( + label=i18n("特征文件路径"), + value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", + interactive=True, + ) + index_rate1 = gr.Slider( + minimum=0, + maximum=1, + label="检索特征占比", + value=0.6, + interactive=True, + ) + f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) + but0 = gr.Button(i18n("转换"), variant="primary") with gr.Column(): - vc_output1 = gr.Textbox(label="输出信息") - vc_output2 = gr.Audio(label="输出音频(右下角三个点,点了可以下载)") - but0.click(vc_single, [spk_item, input_audio0, vc_transform0,f0_file,f0method0,file_index1,file_big_npy1,index_rate1], [vc_output1, vc_output2]) + vc_output1 = gr.Textbox(label=i18n("输出信息")) + vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) + but0.click( + vc_single, + [ + spk_item, + input_audio0, + vc_transform0, + f0_file, + f0method0, + file_index1, + file_big_npy1, + index_rate1, + ], + [vc_output1, vc_output2], + ) with gr.Group(): - gr.Markdown(value=""" - 批量转换,输入待转换音频文件夹,或上传多个音频文件,在指定文件夹(默认opt)下输出转换的音频。 - """) + gr.Markdown( + value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") + ) with gr.Row(): with gr.Column(): - vc_transform1 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=0) - opt_input = gr.Textbox(label="指定输出文件夹",value="opt") - f0method1=gr.Radio(label="选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比", choices=["pm","harvest"],value="pm", interactive=True) + vc_transform1 = gr.Number( + label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 + ) + opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") + f0method1 = gr.Radio( + label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"), + choices=["pm", "harvest"], + value="pm", + interactive=True, + ) with gr.Column(): - file_index2 = gr.Textbox(label="特征检索库文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", interactive=True) - file_big_npy2 = gr.Textbox(label="特征文件路径",value="E:\codes\py39\\vits_vc_gpu_train\logs\mi-test-1key\\total_fea.npy", interactive=True) - index_rate2 = gr.Slider(minimum=0, maximum=1,label='检索特征占比', value=1,interactive=True) + file_index2 = gr.Textbox( + label=i18n("特征检索库文件路径"), + value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index", + interactive=True, + ) + file_big_npy2 = gr.Textbox( + label=i18n("特征文件路径"), + value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", + interactive=True, + ) + index_rate2 = gr.Slider( + minimum=0, + maximum=1, + label=i18n("检索特征占比"), + value=1, + interactive=True, + ) with gr.Column(): - dir_input = gr.Textbox(label="输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs") - inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹") - but1=gr.Button("转换", variant="primary") - vc_output3 = gr.Textbox(label="输出信息") - but1.click(vc_multi, [spk_item, dir_input,opt_input,inputs, vc_transform1,f0method1,file_index2,file_big_npy2,index_rate2], [vc_output3]) - with gr.TabItem("伴奏人声分离"): + dir_input = gr.Textbox( + label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), + value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs", + ) + inputs = gr.File( + file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") + ) + but1 = gr.Button(i18n("转换"), variant="primary") + vc_output3 = gr.Textbox(label=i18n("输出信息")) + but1.click( + vc_multi, + [ + spk_item, + dir_input, + opt_input, + inputs, + vc_transform1, + f0method1, + file_index2, + file_big_npy2, + index_rate2, + ], + [vc_output3], + ) + with gr.TabItem(i18n("伴奏人声分离")): with gr.Group(): - gr.Markdown(value=""" - 人声伴奏分离批量处理,使用UVR5模型。
- 不带和声用HP2,带和声且提取的人声不需要和声用HP5
- 合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了) - """) + gr.Markdown( + value=i18n( + "人声伴奏分离批量处理, 使用UVR5模型.
不带和声用HP2, 带和声且提取的人声不需要和声用HP5
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)" + ) + ) with gr.Row(): with gr.Column(): - dir_wav_input = gr.Textbox(label="输入待处理音频文件夹路径",value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs") - wav_inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹") + dir_wav_input = gr.Textbox( + label=i18n("输入待处理音频文件夹路径"), + value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs", + ) + wav_inputs = gr.File( + file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") + ) with gr.Column(): - model_choose = gr.Dropdown(label="模型", choices=uvr5_names) - opt_vocal_root = gr.Textbox(label="指定输出人声文件夹",value="opt") - opt_ins_root = gr.Textbox(label="指定输出乐器文件夹",value="opt") - but2=gr.Button("转换", variant="primary") - vc_output4 = gr.Textbox(label="输出信息") - but2.click(uvr, [model_choose, dir_wav_input,opt_vocal_root,wav_inputs,opt_ins_root], [vc_output4]) - with gr.TabItem("训练"): - gr.Markdown(value=""" - step1:填写实验配置。实验数据放在logs下,每个实验一个文件夹,需手工输入实验名路径,内含实验配置,日志,训练得到的模型文件。 - """) + model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) + opt_vocal_root = gr.Textbox( + label=i18n("指定输出人声文件夹"), value="opt" + ) + opt_ins_root = gr.Textbox(label=i18n("指定输出乐器文件夹"), value="opt") + but2 = gr.Button(i18n("转换"), variant="primary") + vc_output4 = gr.Textbox(label=i18n("输出信息")) + but2.click( + uvr, + [ + model_choose, + dir_wav_input, + opt_vocal_root, + wav_inputs, + opt_ins_root, + ], + [vc_output4], + ) + with gr.TabItem(i18n("训练")): + gr.Markdown( + value=i18n( + "step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " + ) + ) with gr.Row(): - exp_dir1 = gr.Textbox(label="输入实验名",value="mi-test") - sr2 = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True) - if_f0_3 = gr.Radio(label="模型是否带音高指导(唱歌一定要,语音可以不要)", choices=["是","否"],value="是", interactive=True) - with gr.Group():#暂时单人的,后面支持最多4人的#数据处理 - gr.Markdown(value=""" - step2a:自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化,在实验目录下生成2个wav文件夹;暂时只支持单人训练。 - """) + exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") + sr2 = gr.Radio( + label=i18n("目标采样率"), + choices=["32k", "40k", "48k"], + value="40k", + interactive=True, + ) + if_f0_3 = gr.Radio( + label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), + choices=["是", "否"], + value="是", + interactive=True, + ) + with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理 + gr.Markdown( + value=i18n( + "step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " + ) + ) with gr.Row(): - trainset_dir4 = gr.Textbox(label="输入训练文件夹路径",value="E:\语音音频+标注\米津玄师\src") - spk_id5 = gr.Slider(minimum=0, maximum=4, step=1, label='请指定说话人id', value=0,interactive=True) - but1=gr.Button("处理数据", variant="primary") - info1=gr.Textbox(label="输出信息",value="") - but1.click(preprocess_dataset,[trainset_dir4,exp_dir1,sr2],[info1]) + trainset_dir4 = gr.Textbox( + label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" + ) + spk_id5 = gr.Slider( + minimum=0, + maximum=4, + step=1, + label=i18n("请指定说话人id"), + value=0, + interactive=True, + ) + but1 = gr.Button(i18n("处理数据"), variant="primary") + info1 = gr.Textbox(label=i18n("输出信息"), value="") + but1.click( + preprocess_dataset, [trainset_dir4, exp_dir1, sr2], [info1] + ) with gr.Group(): - gr.Markdown(value=""" - step2b:使用CPU提取音高(如果模型带音高),使用GPU提取特征(选择卡号) - """) + gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) with gr.Row(): with gr.Column(): - gpus6 = gr.Textbox(label="以-分隔输入使用的卡号,例如 0-1-2 使用卡0和卡1和卡2",value=gpus,interactive=True) - gpu_info9 = gr.Textbox(label="显卡信息",value=gpu_info) + gpus6 = gr.Textbox( + label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), + value=gpus, + interactive=True, + ) + gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) with gr.Column(): - np7 = gr.Slider(minimum=0, maximum=ncpu, step=1, label='提取音高使用的CPU进程数', value=ncpu,interactive=True) - f0method8 = gr.Radio(label="选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢", choices=["pm", "harvest","dio"], value="harvest", interactive=True) - but2=gr.Button("特征提取", variant="primary") - info2=gr.Textbox(label="输出信息",value="",max_lines=8) - but2.click(extract_f0_feature,[gpus6,np7,f0method8,if_f0_3,exp_dir1],[info2]) + np7 = gr.Slider( + minimum=0, + maximum=ncpu, + step=1, + label=i18n("提取音高使用的CPU进程数"), + value=ncpu, + interactive=True, + ) + f0method8 = gr.Radio( + label=i18n( + "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" + ), + choices=["pm", "harvest", "dio"], + value="harvest", + interactive=True, + ) + but2 = gr.Button(i18n("特征提取"), variant="primary") + info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) + but2.click( + extract_f0_feature, + [gpus6, np7, f0method8, if_f0_3, exp_dir1], + [info2], + ) with gr.Group(): - gr.Markdown(value=""" - step3:填写训练设置,开始训练模型和索引 - """) + gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) with gr.Row(): - save_epoch10 = gr.Slider(minimum=0, maximum=50, step=1, label='保存频率save_every_epoch', value=5,interactive=True) - total_epoch11 = gr.Slider(minimum=0, maximum=100, step=1, label='总训练轮数total_epoch', value=10,interactive=True) - batch_size12 = gr.Slider(minimum=0, maximum=32, step=1, label='batch_size', value=4,interactive=True) - if_save_latest13 = gr.Radio(label="是否仅保存最新的ckpt文件以节省硬盘空间", choices=["是", "否"], value="否", interactive=True) - if_cache_gpu17 = gr.Radio(label="是否缓存所有训练集至显存。10min以下小数据可缓存以加速训练,大数据缓存会炸显存也加不了多少速", choices=["是", "否"], value="否", interactive=True) + save_epoch10 = gr.Slider( + minimum=0, + maximum=50, + step=1, + label=i18n("保存频率save_every_epoch"), + value=5, + interactive=True, + ) + total_epoch11 = gr.Slider( + minimum=0, + maximum=1000, + step=1, + label=i18n("总训练轮数total_epoch"), + value=20, + interactive=True, + ) + batch_size12 = gr.Slider( + minimum=0, + maximum=32, + step=1, + label="每张显卡的batch_size", + value=4, + interactive=True, + ) + if_save_latest13 = gr.Radio( + label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), + choices=["是", "否"], + value="否", + interactive=True, + ) + if_cache_gpu17 = gr.Radio( + label=i18n( + "是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" + ), + choices=["是", "否"], + value="是", + interactive=True, + ) with gr.Row(): - pretrained_G14 = gr.Textbox(label="加载预训练底模G路径", value="pretrained/f0G40k.pth",interactive=True) - pretrained_D15 = gr.Textbox(label="加载预训练底模D路径", value="pretrained/f0D40k.pth",interactive=True) - sr2.change(change_sr2, [sr2,if_f0_3], [pretrained_G14,pretrained_D15]) - if_f0_3.change(change_f0, [if_f0_3, sr2], [np7, f0method8, pretrained_G14, pretrained_D15]) - gpus16 = gr.Textbox(label="以-分隔输入使用的卡号,例如 0-1-2 使用卡0和卡1和卡2", value=gpus,interactive=True) - but3 = gr.Button("训练模型", variant="primary") - but4 = gr.Button("训练特征索引", variant="primary") - but5 = gr.Button("一键训练", variant="primary") - info3 = gr.Textbox(label="输出信息", value="",max_lines=10) - but3.click(click_train,[exp_dir1,sr2,if_f0_3,spk_id5,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17],info3) - but4.click(train_index,[exp_dir1],info3) - but5.click(train1key,[exp_dir1,sr2,if_f0_3,trainset_dir4,spk_id5,gpus6,np7,f0method8,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16,if_cache_gpu17],info3) + pretrained_G14 = gr.Textbox( + label=i18n("加载预训练底模G路径"), + value="pretrained/f0G40k.pth", + interactive=True, + ) + pretrained_D15 = gr.Textbox( + label=i18n("加载预训练底模D路径"), + value="pretrained/f0D40k.pth", + interactive=True, + ) + sr2.change( + change_sr2, [sr2, if_f0_3], [pretrained_G14, pretrained_D15] + ) + if_f0_3.change( + change_f0, + [if_f0_3, sr2], + [np7, f0method8, pretrained_G14, pretrained_D15], + ) + gpus16 = gr.Textbox( + label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), + value=gpus, + interactive=True, + ) + but3 = gr.Button(i18n("训练模型"), variant="primary") + but4 = gr.Button(i18n("训练特征索引"), variant="primary") + but5 = gr.Button(i18n("一键训练"), variant="primary") + info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) + but3.click( + click_train, + [ + exp_dir1, + sr2, + if_f0_3, + spk_id5, + save_epoch10, + total_epoch11, + batch_size12, + if_save_latest13, + pretrained_G14, + pretrained_D15, + gpus16, + if_cache_gpu17, + ], + info3, + ) + but4.click(train_index, [exp_dir1], info3) + but5.click( + train1key, + [ + exp_dir1, + sr2, + if_f0_3, + trainset_dir4, + spk_id5, + gpus6, + np7, + f0method8, + save_epoch10, + total_epoch11, + batch_size12, + if_save_latest13, + pretrained_G14, + pretrained_D15, + gpus16, + if_cache_gpu17, + ], + info3, + ) - with gr.TabItem("ckpt处理"): + with gr.TabItem(i18n("ckpt处理")): with gr.Group(): - gr.Markdown(value="""模型融合,可用于测试音色融合""") + gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) with gr.Row(): - ckpt_a = gr.Textbox(label="A模型路径", value="", interactive=True) - ckpt_b = gr.Textbox(label="B模型路径", value="", interactive=True) - alpha_a = gr.Slider(minimum=0, maximum=1, label='A模型权重', value=0.5, interactive=True) + ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) + ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) + alpha_a = gr.Slider( + minimum=0, + maximum=1, + label=i18n("A模型权重"), + value=0.5, + interactive=True, + ) with gr.Row(): - sr_ = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True) - if_f0_ = gr.Radio(label="模型是否带音高指导", choices=["是","否"],value="是", interactive=True) - info__ = gr.Textbox(label="要置入的模型信息", value="", max_lines=8, interactive=True) - name_to_save0=gr.Textbox(label="保存的模型名不带后缀", value="", max_lines=1, interactive=True) + sr_ = gr.Radio( + label=i18n("目标采样率"), + choices=["32k", "40k", "48k"], + value="40k", + interactive=True, + ) + if_f0_ = gr.Radio( + label=i18n("模型是否带音高指导"), + choices=["是", "否"], + value="是", + interactive=True, + ) + info__ = gr.Textbox( + label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True + ) + name_to_save0 = gr.Textbox( + label=i18n("保存的模型名不带后缀"), + value="", + max_lines=1, + interactive=True, + ) with gr.Row(): - but6 = gr.Button("融合", variant="primary") - info4 = gr.Textbox(label="输出信息", value="", max_lines=8) - but6.click(merge, [ckpt_a,ckpt_b,alpha_a,sr_,if_f0_,info__,name_to_save0], info4)#def merge(path1,path2,alpha1,sr,f0,info): + but6 = gr.Button(i18n("融合"), variant="primary") + info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) + but6.click( + merge, + [ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0], + info4, + ) # def merge(path1,path2,alpha1,sr,f0,info): with gr.Group(): - gr.Markdown(value="修改模型信息(仅支持weights文件夹下提取的小模型文件)") + gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) with gr.Row(): - ckpt_path0 = gr.Textbox(label="模型路径", value="", interactive=True) - info_=gr.Textbox(label="要改的模型信息", value="", max_lines=8, interactive=True) - name_to_save1=gr.Textbox(label="保存的文件名,默认空为和源文件同名", value="", max_lines=8, interactive=True) + ckpt_path0 = gr.Textbox( + label=i18n("模型路径"), value="", interactive=True + ) + info_ = gr.Textbox( + label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True + ) + name_to_save1 = gr.Textbox( + label=i18n("保存的文件名, 默认空为和源文件同名"), + value="", + max_lines=8, + interactive=True, + ) with gr.Row(): - but7 = gr.Button("修改", variant="primary") - info5 = gr.Textbox(label="输出信息", value="", max_lines=8) - but7.click(change_info, [ckpt_path0,info_,name_to_save1], info5) + but7 = gr.Button(i18n("修改"), variant="primary") + info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) + but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5) with gr.Group(): - gr.Markdown(value="查看模型信息(仅支持weights文件夹下提取的小模型文件)") + gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) with gr.Row(): - ckpt_path1 = gr.Textbox(label="模型路径", value="", interactive=True) - but8 = gr.Button("查看", variant="primary") - info6 = gr.Textbox(label="输出信息", value="", max_lines=8) + ckpt_path1 = gr.Textbox( + label=i18n("模型路径"), value="", interactive=True + ) + but8 = gr.Button(i18n("查看"), variant="primary") + info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) but8.click(show_info, [ckpt_path1], info6) with gr.Group(): - gr.Markdown(value="模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况") + gr.Markdown( + value=i18n( + "模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" + ) + ) with gr.Row(): - ckpt_path2 = gr.Textbox(label="模型路径", value="E:\codes\py39\logs\mi-test_f0_48k\\G_23333.pth", interactive=True) - save_name = gr.Textbox(label="保存名", value="", interactive=True) - sr__ = gr.Radio(label="目标采样率", choices=["32k","40k","48k"],value="40k", interactive=True) - if_f0__ = gr.Radio(label="模型是否带音高指导,1是0否", choices=["1","0"],value="1", interactive=True) - info___ = gr.Textbox(label="要置入的模型信息", value="", max_lines=8, interactive=True) - but9 = gr.Button("提取", variant="primary") - info7 = gr.Textbox(label="输出信息", value="", max_lines=8) - ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) - but9.click(extract_small_model, [ckpt_path2,save_name,sr__,if_f0__,info___], info7) + ckpt_path2 = gr.Textbox( + label=i18n("模型路径"), + value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", + interactive=True, + ) + save_name = gr.Textbox( + label=i18n("保存名"), value="", interactive=True + ) + sr__ = gr.Radio( + label=i18n("目标采样率"), + choices=["32k", "40k", "48k"], + value="40k", + interactive=True, + ) + if_f0__ = gr.Radio( + label=i18n("模型是否带音高指导,1是0否"), + choices=["1", "0"], + value="1", + interactive=True, + ) + info___ = gr.Textbox( + label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True + ) + but9 = gr.Button(i18n("提取"), variant="primary") + info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) + ckpt_path2.change(change_info_, [ckpt_path2], [sr__, if_f0__]) + but9.click( + extract_small_model, + [ckpt_path2, save_name, sr__, if_f0__, info___], + info7, + ) - with gr.TabItem("招募音高曲线前端编辑器"): - gr.Markdown(value="""加开发群联系我xxxxx""") - with gr.TabItem("点击查看交流、问题反馈群号"): - gr.Markdown(value="""xxxxx""") + with gr.TabItem(i18n("Onnx导出")): + with gr.Row(): + ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) + with gr.Row(): + onnx_dir = gr.Textbox(label=i18n("Onnx输出路径"), value="", interactive=True) + with gr.Row(): + moevs = gr.Checkbox(label=i18n("MoeVS模型"), value=True) + infoOnnx = gr.Label(label="Null") + with gr.Row(): + butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") + butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx) + + # with gr.TabItem(i18n("招募音高曲线前端编辑器")): + # gr.Markdown(value=i18n("加开发群联系我xxxxx")) + # with gr.TabItem(i18n("点击查看交流、问题反馈群号")): + # gr.Markdown(value=i18n("xxxxx")) if iscolab: app.queue(concurrency_count=511, max_size=1022).launch(share=True) else: - app.queue(concurrency_count=511, max_size=1022).launch(server_name="0.0.0.0",inbrowser=True,server_port=listen_port,quiet=True) + app.queue(concurrency_count=511, max_size=1022).launch( + server_name="0.0.0.0", + inbrowser=not noautoopen, + server_port=listen_port, + quiet=True, + )