mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-02-06 21:52:50 +08:00
Add files via upload (#379)
This commit is contained in:
parent
69071119a9
commit
24f2ad44ea
85
infer_pack/modules/F0Predictor/DioF0Predictor.py
Normal file
85
infer_pack/modules/F0Predictor/DioF0Predictor.py
Normal file
@ -0,0 +1,85 @@
|
|||||||
|
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||||
|
import pyworld
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class DioF0Predictor(F0Predictor):
|
||||||
|
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
||||||
|
self.hop_length = hop_length
|
||||||
|
self.f0_min = f0_min
|
||||||
|
self.f0_max = f0_max
|
||||||
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
|
def interpolate_f0(self,f0):
|
||||||
|
'''
|
||||||
|
对F0进行插值处理
|
||||||
|
'''
|
||||||
|
|
||||||
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
||||||
|
vuv_vector[data > 0.0] = 1.0
|
||||||
|
vuv_vector[data <= 0.0] = 0.0
|
||||||
|
|
||||||
|
ip_data = data
|
||||||
|
|
||||||
|
frame_number = data.size
|
||||||
|
last_value = 0.0
|
||||||
|
for i in range(frame_number):
|
||||||
|
if data[i] <= 0.0:
|
||||||
|
j = i + 1
|
||||||
|
for j in range(i + 1, frame_number):
|
||||||
|
if data[j] > 0.0:
|
||||||
|
break
|
||||||
|
if j < frame_number - 1:
|
||||||
|
if last_value > 0.0:
|
||||||
|
step = (data[j] - data[i - 1]) / float(j - i)
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
||||||
|
else:
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[j]
|
||||||
|
else:
|
||||||
|
for k in range(i, frame_number):
|
||||||
|
ip_data[k] = last_value
|
||||||
|
else:
|
||||||
|
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
||||||
|
last_value = data[i]
|
||||||
|
|
||||||
|
return ip_data[:,0], vuv_vector[:,0]
|
||||||
|
|
||||||
|
def resize_f0(self,x, target_len):
|
||||||
|
source = np.array(x)
|
||||||
|
source[source<0.001] = np.nan
|
||||||
|
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
||||||
|
res = np.nan_to_num(target)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def compute_f0(self,wav,p_len=None):
|
||||||
|
if p_len is None:
|
||||||
|
p_len = wav.shape[0]//self.hop_length
|
||||||
|
f0, t = pyworld.dio(
|
||||||
|
wav.astype(np.double),
|
||||||
|
fs=self.sampling_rate,
|
||||||
|
f0_floor=self.f0_min,
|
||||||
|
f0_ceil=self.f0_max,
|
||||||
|
frame_period=1000 * self.hop_length / self.sampling_rate,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
||||||
|
for index, pitch in enumerate(f0):
|
||||||
|
f0[index] = round(pitch, 1)
|
||||||
|
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
||||||
|
|
||||||
|
def compute_f0_uv(self,wav,p_len=None):
|
||||||
|
if p_len is None:
|
||||||
|
p_len = wav.shape[0]//self.hop_length
|
||||||
|
f0, t = pyworld.dio(
|
||||||
|
wav.astype(np.double),
|
||||||
|
fs=self.sampling_rate,
|
||||||
|
f0_floor=self.f0_min,
|
||||||
|
f0_ceil=self.f0_max,
|
||||||
|
frame_period=1000 * self.hop_length / self.sampling_rate,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
||||||
|
for index, pitch in enumerate(f0):
|
||||||
|
f0[index] = round(pitch, 1)
|
||||||
|
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
16
infer_pack/modules/F0Predictor/F0Predictor.py
Normal file
16
infer_pack/modules/F0Predictor/F0Predictor.py
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
class F0Predictor(object):
|
||||||
|
def compute_f0(self,wav,p_len):
|
||||||
|
'''
|
||||||
|
input: wav:[signal_length]
|
||||||
|
p_len:int
|
||||||
|
output: f0:[signal_length//hop_length]
|
||||||
|
'''
|
||||||
|
pass
|
||||||
|
|
||||||
|
def compute_f0_uv(self,wav,p_len):
|
||||||
|
'''
|
||||||
|
input: wav:[signal_length]
|
||||||
|
p_len:int
|
||||||
|
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
||||||
|
'''
|
||||||
|
pass
|
81
infer_pack/modules/F0Predictor/HarvestF0Predictor.py
Normal file
81
infer_pack/modules/F0Predictor/HarvestF0Predictor.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||||
|
import pyworld
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class HarvestF0Predictor(F0Predictor):
|
||||||
|
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
||||||
|
self.hop_length = hop_length
|
||||||
|
self.f0_min = f0_min
|
||||||
|
self.f0_max = f0_max
|
||||||
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
|
def interpolate_f0(self,f0):
|
||||||
|
'''
|
||||||
|
对F0进行插值处理
|
||||||
|
'''
|
||||||
|
|
||||||
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
||||||
|
vuv_vector[data > 0.0] = 1.0
|
||||||
|
vuv_vector[data <= 0.0] = 0.0
|
||||||
|
|
||||||
|
ip_data = data
|
||||||
|
|
||||||
|
frame_number = data.size
|
||||||
|
last_value = 0.0
|
||||||
|
for i in range(frame_number):
|
||||||
|
if data[i] <= 0.0:
|
||||||
|
j = i + 1
|
||||||
|
for j in range(i + 1, frame_number):
|
||||||
|
if data[j] > 0.0:
|
||||||
|
break
|
||||||
|
if j < frame_number - 1:
|
||||||
|
if last_value > 0.0:
|
||||||
|
step = (data[j] - data[i - 1]) / float(j - i)
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
||||||
|
else:
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[j]
|
||||||
|
else:
|
||||||
|
for k in range(i, frame_number):
|
||||||
|
ip_data[k] = last_value
|
||||||
|
else:
|
||||||
|
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
||||||
|
last_value = data[i]
|
||||||
|
|
||||||
|
return ip_data[:,0], vuv_vector[:,0]
|
||||||
|
|
||||||
|
def resize_f0(self,x, target_len):
|
||||||
|
source = np.array(x)
|
||||||
|
source[source<0.001] = np.nan
|
||||||
|
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
||||||
|
res = np.nan_to_num(target)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def compute_f0(self,wav,p_len=None):
|
||||||
|
if p_len is None:
|
||||||
|
p_len = wav.shape[0]//self.hop_length
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
|
wav.astype(np.double),
|
||||||
|
fs=self.hop_length,
|
||||||
|
f0_ceil=self.f0_max,
|
||||||
|
f0_floor=self.f0_min,
|
||||||
|
frame_period=1000 * self.hop_length / self.sampling_rate,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
||||||
|
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
||||||
|
|
||||||
|
def compute_f0_uv(self,wav,p_len=None):
|
||||||
|
if p_len is None:
|
||||||
|
p_len = wav.shape[0]//self.hop_length
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
|
wav.astype(np.double),
|
||||||
|
fs=self.sampling_rate,
|
||||||
|
f0_floor=self.f0_min,
|
||||||
|
f0_ceil=self.f0_max,
|
||||||
|
frame_period=1000 * self.hop_length / self.sampling_rate,
|
||||||
|
)
|
||||||
|
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
||||||
|
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
83
infer_pack/modules/F0Predictor/PMF0Predictor.py
Normal file
83
infer_pack/modules/F0Predictor/PMF0Predictor.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
||||||
|
import parselmouth
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class PMF0Predictor(F0Predictor):
|
||||||
|
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
||||||
|
self.hop_length = hop_length
|
||||||
|
self.f0_min = f0_min
|
||||||
|
self.f0_max = f0_max
|
||||||
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
|
|
||||||
|
def interpolate_f0(self,f0):
|
||||||
|
'''
|
||||||
|
对F0进行插值处理
|
||||||
|
'''
|
||||||
|
|
||||||
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
||||||
|
vuv_vector[data > 0.0] = 1.0
|
||||||
|
vuv_vector[data <= 0.0] = 0.0
|
||||||
|
|
||||||
|
ip_data = data
|
||||||
|
|
||||||
|
frame_number = data.size
|
||||||
|
last_value = 0.0
|
||||||
|
for i in range(frame_number):
|
||||||
|
if data[i] <= 0.0:
|
||||||
|
j = i + 1
|
||||||
|
for j in range(i + 1, frame_number):
|
||||||
|
if data[j] > 0.0:
|
||||||
|
break
|
||||||
|
if j < frame_number - 1:
|
||||||
|
if last_value > 0.0:
|
||||||
|
step = (data[j] - data[i - 1]) / float(j - i)
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
||||||
|
else:
|
||||||
|
for k in range(i, j):
|
||||||
|
ip_data[k] = data[j]
|
||||||
|
else:
|
||||||
|
for k in range(i, frame_number):
|
||||||
|
ip_data[k] = last_value
|
||||||
|
else:
|
||||||
|
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
||||||
|
last_value = data[i]
|
||||||
|
|
||||||
|
return ip_data[:,0], vuv_vector[:,0]
|
||||||
|
|
||||||
|
def compute_f0(self,wav,p_len=None):
|
||||||
|
x = wav
|
||||||
|
if p_len is None:
|
||||||
|
p_len = x.shape[0]//self.hop_length
|
||||||
|
else:
|
||||||
|
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
||||||
|
time_step = self.hop_length / self.sampling_rate * 1000
|
||||||
|
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
||||||
|
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||||
|
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
||||||
|
|
||||||
|
pad_size=(p_len - len(f0) + 1) // 2
|
||||||
|
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||||
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||||
|
f0,uv = self.interpolate_f0(f0)
|
||||||
|
return f0
|
||||||
|
|
||||||
|
def compute_f0_uv(self,wav,p_len=None):
|
||||||
|
x = wav
|
||||||
|
if p_len is None:
|
||||||
|
p_len = x.shape[0]//self.hop_length
|
||||||
|
else:
|
||||||
|
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
||||||
|
time_step = self.hop_length / self.sampling_rate * 1000
|
||||||
|
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
||||||
|
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||||
|
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
||||||
|
|
||||||
|
pad_size=(p_len - len(f0) + 1) // 2
|
||||||
|
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||||
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||||
|
f0,uv = self.interpolate_f0(f0)
|
||||||
|
return f0,uv
|
0
infer_pack/modules/F0Predictor/__init__.py
Normal file
0
infer_pack/modules/F0Predictor/__init__.py
Normal file
121
infer_pack/onnx_inference.py
Normal file
121
infer_pack/onnx_inference.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
import onnxruntime
|
||||||
|
import librosa
|
||||||
|
import numpy as np
|
||||||
|
import soundfile
|
||||||
|
|
||||||
|
class ContentVec():
|
||||||
|
def __init__(self, vec_path = "pretrained/vec-768-layer-12.onnx",device=None):
|
||||||
|
print("load model(s) from {}".format(vec_path))
|
||||||
|
if device == 'cpu' or device is None:
|
||||||
|
providers = ['CPUExecutionProvider']
|
||||||
|
elif device == 'cuda':
|
||||||
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Unsportted Device")
|
||||||
|
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
||||||
|
|
||||||
|
def __call__(self, wav):
|
||||||
|
return self.forward(wav)
|
||||||
|
|
||||||
|
def forward(self, wav):
|
||||||
|
feats = wav
|
||||||
|
if feats.ndim == 2: # double channels
|
||||||
|
feats = feats.mean(-1)
|
||||||
|
assert feats.ndim == 1, feats.ndim
|
||||||
|
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
||||||
|
onnx_input = {self.model.get_inputs()[0].name: feats}
|
||||||
|
logits = self.model.run(None, onnx_input)[0]
|
||||||
|
return logits.transpose(0, 2, 1)
|
||||||
|
|
||||||
|
|
||||||
|
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
||||||
|
if f0_predictor == "pm":
|
||||||
|
from infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
||||||
|
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||||
|
elif f0_predictor == "harvest":
|
||||||
|
from infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
||||||
|
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||||
|
elif f0_predictor == "dio":
|
||||||
|
from infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
||||||
|
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||||
|
else:
|
||||||
|
raise Exception("Unknown f0 predictor")
|
||||||
|
return f0_predictor_object
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxRVC():
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_path,
|
||||||
|
sr=40000,
|
||||||
|
hop_size=512,
|
||||||
|
vec_path="vec-768-layer-12",
|
||||||
|
device="cpu"
|
||||||
|
):
|
||||||
|
vec_path = f"pretrained/{vec_path}.onnx"
|
||||||
|
self.vec_model = ContentVec(vec_path, device)
|
||||||
|
if device == 'cpu' or device is None:
|
||||||
|
providers = ['CPUExecutionProvider']
|
||||||
|
elif device == 'cuda':
|
||||||
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Unsportted Device")
|
||||||
|
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
||||||
|
self.sampling_rate = sr
|
||||||
|
self.hop_size = hop_size
|
||||||
|
|
||||||
|
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
||||||
|
onnx_input = {
|
||||||
|
self.model.get_inputs()[0].name: hubert,
|
||||||
|
self.model.get_inputs()[1].name: hubert_length,
|
||||||
|
self.model.get_inputs()[2].name: pitch,
|
||||||
|
self.model.get_inputs()[3].name: pitchf,
|
||||||
|
self.model.get_inputs()[4].name: ds,
|
||||||
|
self.model.get_inputs()[5].name: rnd
|
||||||
|
}
|
||||||
|
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
||||||
|
|
||||||
|
def inference(self, raw_path, sid, f0_method="dio", f0_up_key=0, pad_time=0.5, cr_threshold=0.02):
|
||||||
|
f0_min = 50
|
||||||
|
f0_max = 1100
|
||||||
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
|
f0_predictor = get_f0_predictor(
|
||||||
|
f0_method,
|
||||||
|
hop_length=self.hop_size,
|
||||||
|
sampling_rate=self.sampling_rate,
|
||||||
|
threshold=cr_threshold
|
||||||
|
)
|
||||||
|
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
||||||
|
org_length = len(wav)
|
||||||
|
if org_length / sr > 50.:
|
||||||
|
raise RuntimeError("Reached Max Length")
|
||||||
|
|
||||||
|
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
||||||
|
wav16k = wav16k
|
||||||
|
|
||||||
|
hubert = self.vec_model(wav16k)
|
||||||
|
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
||||||
|
hubert_length = hubert.shape[1]
|
||||||
|
|
||||||
|
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
||||||
|
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
||||||
|
pitch = pitchf.copy()
|
||||||
|
f0_mel = 1127 * np.log(1 + pitch / 700)
|
||||||
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||||
|
f0_mel_max - f0_mel_min
|
||||||
|
) + 1
|
||||||
|
f0_mel[f0_mel <= 1] = 1
|
||||||
|
f0_mel[f0_mel > 255] = 255
|
||||||
|
pitch = np.rint(f0_mel).astype(np.int64)
|
||||||
|
|
||||||
|
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
||||||
|
pitch = pitch.reshape(1, len(pitch))
|
||||||
|
ds = np.array([sid]).astype(np.int64)
|
||||||
|
|
||||||
|
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
||||||
|
hubert_length = np.array([hubert_length]).astype(np.int64)
|
||||||
|
|
||||||
|
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
||||||
|
out_wav = np.pad(out_wav, (0, 2*self.hop_size), 'constant')
|
||||||
|
return out_wav[0:org_length]
|
18
onnx_inference_demo.py
Normal file
18
onnx_inference_demo.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
import soundfile
|
||||||
|
from infer_pack.onnx_inference import OnnxRVC
|
||||||
|
|
||||||
|
hop_size = 512
|
||||||
|
sampling_rate = 40000 #采样率
|
||||||
|
f0_up_key = 0 #升降调
|
||||||
|
sid = 0 #角色ID
|
||||||
|
f0_method = "dio" #F0提取算法
|
||||||
|
model_path = "ShirohaRVC.onnx" #模型的完整路径
|
||||||
|
vec_name = "vec-256-layer-9" #内部自动补齐为 f"pretrained/{vec_name}.onnx" 需要onnx的vec模型
|
||||||
|
wav_path = "123.wav" #输入路径或ByteIO实例
|
||||||
|
out_path = "out.wav" #输出路径或ByteIO实例
|
||||||
|
|
||||||
|
model = OnnxRVC(model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda")
|
||||||
|
|
||||||
|
audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
|
||||||
|
|
||||||
|
soundfile.write(out_path, audio, sampling_rate)
|
Loading…
Reference in New Issue
Block a user