mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-05-06 20:01:37 +08:00
Refactor mel module import and variable names
This commit is contained in:
parent
ec2ec9032e
commit
2e60c12044
@ -1,18 +1,8 @@
|
|||||||
import math
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import torch.utils.data
|
import torch.utils.data
|
||||||
import numpy as np
|
|
||||||
import librosa
|
|
||||||
import librosa.util as librosa_util
|
|
||||||
from librosa.util import normalize, pad_center, tiny
|
|
||||||
from scipy.signal import get_window
|
|
||||||
from scipy.io.wavfile import read
|
|
||||||
from librosa.filters import mel as librosa_mel_fn
|
from librosa.filters import mel as librosa_mel_fn
|
||||||
|
|
||||||
|
|
||||||
MAX_WAV_VALUE = 32768.0
|
MAX_WAV_VALUE = 32768.0
|
||||||
|
|
||||||
|
|
||||||
@ -35,13 +25,11 @@ def dynamic_range_decompression_torch(x, C=1):
|
|||||||
|
|
||||||
|
|
||||||
def spectral_normalize_torch(magnitudes):
|
def spectral_normalize_torch(magnitudes):
|
||||||
output = dynamic_range_compression_torch(magnitudes)
|
return dynamic_range_compression_torch(magnitudes)
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
def spectral_de_normalize_torch(magnitudes):
|
def spectral_de_normalize_torch(magnitudes):
|
||||||
output = dynamic_range_decompression_torch(magnitudes)
|
return dynamic_range_decompression_torch(magnitudes)
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
# Reusable banks
|
# Reusable banks
|
||||||
@ -116,12 +104,14 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
||||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||||
spec = spectral_normalize_torch(spec)
|
melspec = spectral_normalize_torch(melspec)
|
||||||
return spec
|
return melspec
|
||||||
|
|
||||||
|
|
||||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
def mel_spectrogram_torch(
|
||||||
|
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
||||||
|
):
|
||||||
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -135,4 +125,4 @@ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size,
|
|||||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
||||||
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||||
|
|
||||||
return melspec
|
return melspec
|
||||||
|
Loading…
x
Reference in New Issue
Block a user