mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-19 21:00:11 +08:00
Change f0 predictor to harvest. (#123)
Co-authored-by: EntropyRiser <1832783120@qq.com>
This commit is contained in:
parent
334da847d2
commit
2f51e932bf
139
gui.py
139
gui.py
@ -7,9 +7,10 @@ import sounddevice as sd
|
||||
import noisereduce as nr
|
||||
import numpy as np
|
||||
from fairseq import checkpoint_utils
|
||||
import librosa, torch, parselmouth, faiss, time, threading
|
||||
import librosa, torch, pyworld, faiss, time, threading
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as tat
|
||||
import scipy.signal as signal
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||||
@ -26,71 +27,82 @@ class RVC:
|
||||
"""
|
||||
初始化
|
||||
"""
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
if index_rate != 0:
|
||||
self.index = faiss.read_index(index_path)
|
||||
self.big_npy = np.load(npy_path)
|
||||
print("index search enabled")
|
||||
self.index_rate = index_rate
|
||||
model_path = hubert_path
|
||||
print("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[model_path],
|
||||
suffix="",
|
||||
)
|
||||
self.model = models[0]
|
||||
self.model = self.model.to(device)
|
||||
self.model = self.model.half()
|
||||
self.model.eval()
|
||||
cpt = torch.load(pth_path, map_location="cpu")
|
||||
tgt_sr = cpt["config"][-1]
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||
if_f0 = cpt.get("f0", 1)
|
||||
if if_f0 == 1:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True)
|
||||
else:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||
del self.net_g.enc_q
|
||||
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||||
self.net_g.eval().to(device)
|
||||
self.net_g.half()
|
||||
try:
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
self.sr = 16000
|
||||
self.window = 160
|
||||
if index_rate != 0:
|
||||
self.index = faiss.read_index(index_path)
|
||||
self.big_npy = np.load(npy_path)
|
||||
print("index search enabled")
|
||||
self.index_rate = index_rate
|
||||
model_path = hubert_path
|
||||
print("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[model_path],
|
||||
suffix="",
|
||||
)
|
||||
self.model = models[0]
|
||||
self.model = self.model.to(device)
|
||||
self.model = self.model.half()
|
||||
self.model.eval()
|
||||
cpt = torch.load(pth_path, map_location="cpu")
|
||||
tgt_sr = cpt["config"][-1]
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||
if_f0 = cpt.get("f0", 1)
|
||||
if if_f0 == 1:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True)
|
||||
else:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||
del self.net_g.enc_q
|
||||
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||||
self.net_g.eval().to(device)
|
||||
self.net_g.half()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
def get_f0_coarse(self, f0):
|
||||
def get_f0(self, x, f0_up_key, inp_f0=None):
|
||||
x_pad=1
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=self.sr,
|
||||
f0_ceil=f0_max,
|
||||
f0_floor=f0_min,
|
||||
frame_period=10,
|
||||
)
|
||||
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
tf0 = self.sr // self.window # 每秒f0点数
|
||||
if inp_f0 is not None:
|
||||
delta_t = np.round(
|
||||
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||
).astype("int16")
|
||||
replace_f0 = np.interp(
|
||||
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||
)
|
||||
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
||||
self.f0_mel_max - self.f0_mel_min
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
# f0_mel[f0_mel > 188] = 188
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse
|
||||
|
||||
def get_f0(self, x, p_len, f0_up_key=0):
|
||||
f0 = (
|
||||
parselmouth.Sound(x, 16000)
|
||||
.to_pitch_ac(
|
||||
time_step=self.time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=self.f0_min,
|
||||
pitch_ceiling=self.f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# f0=suofang(f0)
|
||||
f0bak = f0.copy()
|
||||
f0_coarse = self.get_f0_coarse(f0)
|
||||
return f0_coarse, f0bak
|
||||
return f0_coarse, f0bak # 1-0
|
||||
|
||||
def infer(self, feats: torch.Tensor) -> np.ndarray:
|
||||
"""
|
||||
@ -127,7 +139,7 @@ class RVC:
|
||||
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
||||
p_len = min(feats.shape[1], 12000) #
|
||||
print(feats.shape)
|
||||
pitch, pitchf = self.get_f0(audio, p_len, self.f0_up_key)
|
||||
pitch, pitchf = self.get_f0(audio, self.f0_up_key)
|
||||
p_len = min(feats.shape[1], 12000, pitch.shape[0]) # 太大了爆显存
|
||||
torch.cuda.synchronize()
|
||||
# print(feats.shape,pitch.shape)
|
||||
@ -365,7 +377,7 @@ class GUI:
|
||||
self.config.pth_path,
|
||||
self.config.index_path,
|
||||
self.config.npy_path,
|
||||
self.config.index_rate,
|
||||
self.config.index_rate
|
||||
)
|
||||
self.input_wav: np.ndarray = np.zeros(
|
||||
self.extra_frame
|
||||
@ -487,8 +499,9 @@ class GUI:
|
||||
else:
|
||||
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||
total_time = time.perf_counter() - start_time
|
||||
print("infer time:" + str(total_time))
|
||||
self.window["infer_time"].update(int(total_time * 1000))
|
||||
print("infer time:" + str(total_time))
|
||||
|
||||
|
||||
def get_devices(self, update: bool = True):
|
||||
"""获取设备列表"""
|
||||
|
Loading…
Reference in New Issue
Block a user