Change f0 predictor to harvest. (#123)

Co-authored-by: EntropyRiser <1832783120@qq.com>
This commit is contained in:
EntropyRiser 2023-04-22 19:32:49 +08:00 committed by GitHub
parent 334da847d2
commit 2f51e932bf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

139
gui.py
View File

@ -7,9 +7,10 @@ import sounddevice as sd
import noisereduce as nr import noisereduce as nr
import numpy as np import numpy as np
from fairseq import checkpoint_utils from fairseq import checkpoint_utils
import librosa, torch, parselmouth, faiss, time, threading import librosa, torch, pyworld, faiss, time, threading
import torch.nn.functional as F import torch.nn.functional as F
import torchaudio.transforms as tat import torchaudio.transforms as tat
import scipy.signal as signal
# import matplotlib.pyplot as plt # import matplotlib.pyplot as plt
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
@ -26,71 +27,82 @@ class RVC:
""" """
初始化 初始化
""" """
self.f0_up_key = key try:
self.time_step = 160 / 16000 * 1000 self.f0_up_key = key
self.f0_min = 50 self.time_step = 160 / 16000 * 1000
self.f0_max = 1100 self.f0_min = 50
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) self.f0_max = 1100
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
if index_rate != 0: self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.index = faiss.read_index(index_path) self.sr = 16000
self.big_npy = np.load(npy_path) self.window = 160
print("index search enabled") if index_rate != 0:
self.index_rate = index_rate self.index = faiss.read_index(index_path)
model_path = hubert_path self.big_npy = np.load(npy_path)
print("load model(s) from {}".format(model_path)) print("index search enabled")
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( self.index_rate = index_rate
[model_path], model_path = hubert_path
suffix="", print("load model(s) from {}".format(model_path))
) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
self.model = models[0] [model_path],
self.model = self.model.to(device) suffix="",
self.model = self.model.half() )
self.model.eval() self.model = models[0]
cpt = torch.load(pth_path, map_location="cpu") self.model = self.model.to(device)
tgt_sr = cpt["config"][-1] self.model = self.model.half()
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk self.model.eval()
if_f0 = cpt.get("f0", 1) cpt = torch.load(pth_path, map_location="cpu")
if if_f0 == 1: tgt_sr = cpt["config"][-1]
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True) cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
else: if_f0 = cpt.get("f0", 1)
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) if if_f0 == 1:
del self.net_g.enc_q self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True)
print(self.net_g.load_state_dict(cpt["weight"], strict=False)) else:
self.net_g.eval().to(device) self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
self.net_g.half() del self.net_g.enc_q
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
self.net_g.eval().to(device)
self.net_g.half()
except Exception as e:
print(e)
def get_f0_coarse(self, f0): def get_f0(self, x, f0_up_key, inp_f0=None):
x_pad=1
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0, t = pyworld.harvest(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700) f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / ( f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
self.f0_mel_max - self.f0_mel_min f0_mel_max - f0_mel_min
) + 1 ) + 1
f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255 f0_mel[f0_mel > 255] = 255
# f0_mel[f0_mel > 188] = 188
f0_coarse = np.rint(f0_mel).astype(np.int) f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse return f0_coarse, f0bak # 1-0
def get_f0(self, x, p_len, f0_up_key=0):
f0 = (
parselmouth.Sound(x, 16000)
.to_pitch_ac(
time_step=self.time_step / 1000,
voicing_threshold=0.6,
pitch_floor=self.f0_min,
pitch_ceiling=self.f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
f0 *= pow(2, f0_up_key / 12)
# f0=suofang(f0)
f0bak = f0.copy()
f0_coarse = self.get_f0_coarse(f0)
return f0_coarse, f0bak
def infer(self, feats: torch.Tensor) -> np.ndarray: def infer(self, feats: torch.Tensor) -> np.ndarray:
""" """
@ -127,7 +139,7 @@ class RVC:
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存 # p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
p_len = min(feats.shape[1], 12000) # p_len = min(feats.shape[1], 12000) #
print(feats.shape) print(feats.shape)
pitch, pitchf = self.get_f0(audio, p_len, self.f0_up_key) pitch, pitchf = self.get_f0(audio, self.f0_up_key)
p_len = min(feats.shape[1], 12000, pitch.shape[0]) # 太大了爆显存 p_len = min(feats.shape[1], 12000, pitch.shape[0]) # 太大了爆显存
torch.cuda.synchronize() torch.cuda.synchronize()
# print(feats.shape,pitch.shape) # print(feats.shape,pitch.shape)
@ -365,7 +377,7 @@ class GUI:
self.config.pth_path, self.config.pth_path,
self.config.index_path, self.config.index_path,
self.config.npy_path, self.config.npy_path,
self.config.index_rate, self.config.index_rate
) )
self.input_wav: np.ndarray = np.zeros( self.input_wav: np.ndarray = np.zeros(
self.extra_frame self.extra_frame
@ -487,8 +499,9 @@ class GUI:
else: else:
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy() outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time total_time = time.perf_counter() - start_time
print("infer time:" + str(total_time))
self.window["infer_time"].update(int(total_time * 1000)) self.window["infer_time"].update(int(total_time * 1000))
print("infer time:" + str(total_time))
def get_devices(self, update: bool = True): def get_devices(self, update: bool = True):
"""获取设备列表""" """获取设备列表"""