Refactor mel module (#132)

* Refactor wave-to-mel

* Add docstring on mel

* Refactor mel module import and variable names
This commit is contained in:
tarepan 2023-04-24 12:45:20 +09:00 committed by GitHub
parent a02ef401ad
commit 329d739e70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,18 +1,8 @@
import math
import os
import random
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import numpy as np
import librosa
import librosa.util as librosa_util
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window
from scipy.io.wavfile import read
from librosa.filters import mel as librosa_mel_fn
MAX_WAV_VALUE = 32768.0
@ -35,25 +25,38 @@ def dynamic_range_decompression_torch(x, C=1):
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
return dynamic_range_compression_torch(magnitudes)
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
return dynamic_range_decompression_torch(magnitudes)
# Reusable banks
mel_basis = {}
hann_window = {}
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
Args:
y :: (B, T) - Audio waveforms
n_fft
sampling_rate
hop_size
win_size
center
Returns:
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
"""
# Validation
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
# Window - Cache if needed
global hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
wnsize_dtype_device = str(win_size) + "_" + dtype_device
@ -62,6 +65,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
dtype=y.dtype, device=y.device
)
# Padding
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
@ -69,6 +73,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
)
y = y.squeeze(1)
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
spec = torch.stft(
y,
n_fft,
@ -82,11 +87,13 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
return_complex=False,
)
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
# MelBasis - Cache if needed
global mel_basis
dtype_device = str(spec.dtype) + "_" + str(spec.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
@ -95,66 +102,27 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=spec.dtype, device=spec.device
)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
melspec = spectral_normalize_torch(melspec)
return melspec
def mel_spectrogram_torch(
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
):
if torch.min(y) < -1.0:
print("min value is ", torch.min(y))
if torch.max(y) > 1.0:
print("max value is ", torch.max(y))
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
global mel_basis, hann_window
dtype_device = str(y.dtype) + "_" + str(y.device)
fmax_dtype_device = str(fmax) + "_" + dtype_device
wnsize_dtype_device = str(win_size) + "_" + dtype_device
if fmax_dtype_device not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
dtype=y.dtype, device=y.device
)
if wnsize_dtype_device not in hann_window:
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
dtype=y.dtype, device=y.device
)
Args:
y :: (B, T) - Waveforms
Returns:
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
"""
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
# spec = torch.stft(
# y,
# n_fft,
# hop_length=hop_size,
# win_length=win_size,
# window=hann_window[wnsize_dtype_device],
# center=center,
# pad_mode="reflect",
# normalized=False,
# onesided=True,
# )
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_size,
window=hann_window[wnsize_dtype_device],
center=center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=False,
)
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
spec = spectral_normalize_torch(spec)
return spec
return melspec