mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 20:45:04 +08:00
Refactor mel module (#132)
* Refactor wave-to-mel * Add docstring on mel * Refactor mel module import and variable names
This commit is contained in:
parent
a02ef401ad
commit
329d739e70
@ -1,18 +1,8 @@
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
import librosa
|
||||
import librosa.util as librosa_util
|
||||
from librosa.util import normalize, pad_center, tiny
|
||||
from scipy.signal import get_window
|
||||
from scipy.io.wavfile import read
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
@ -35,25 +25,38 @@ def dynamic_range_decompression_torch(x, C=1):
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
return dynamic_range_compression_torch(magnitudes)
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
return dynamic_range_decompression_torch(magnitudes)
|
||||
|
||||
|
||||
# Reusable banks
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
||||
|
||||
Args:
|
||||
y :: (B, T) - Audio waveforms
|
||||
n_fft
|
||||
sampling_rate
|
||||
hop_size
|
||||
win_size
|
||||
center
|
||||
Returns:
|
||||
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
||||
"""
|
||||
# Validation
|
||||
if torch.min(y) < -1.0:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
@ -62,6 +65,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
# Padding
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
@ -69,6 +73,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
@ -82,11 +87,13 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
# MelBasis - Cache if needed
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
@ -95,66 +102,27 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=spec.dtype, device=spec.device
|
||||
)
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
return spec
|
||||
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
||||
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
melspec = spectral_normalize_torch(melspec)
|
||||
return melspec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(
|
||||
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
||||
):
|
||||
if torch.min(y) < -1.0:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.0:
|
||||
print("max value is ", torch.max(y))
|
||||
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
Args:
|
||||
y :: (B, T) - Waveforms
|
||||
Returns:
|
||||
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
||||
"""
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
||||
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
||||
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
|
||||
# spec = torch.stft(
|
||||
# y,
|
||||
# n_fft,
|
||||
# hop_length=hop_size,
|
||||
# win_length=win_size,
|
||||
# window=hann_window[wnsize_dtype_device],
|
||||
# center=center,
|
||||
# pad_mode="reflect",
|
||||
# normalized=False,
|
||||
# onesided=True,
|
||||
# )
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
||||
return melspec
|
||||
|
Loading…
Reference in New Issue
Block a user