From 427ad7997495dedd1dd2185e4368f3849d814a7c Mon Sep 17 00:00:00 2001 From: tarepan Date: Sun, 23 Apr 2023 13:20:53 +0000 Subject: [PATCH] Refactor wave-to-mel --- train/mel_processing.py | 62 +++-------------------------------------- 1 file changed, 4 insertions(+), 58 deletions(-) diff --git a/train/mel_processing.py b/train/mel_processing.py index 315b3d1..821eb27 100644 --- a/train/mel_processing.py +++ b/train/mel_processing.py @@ -100,61 +100,7 @@ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): return spec -def mel_spectrogram_torch( - y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False -): - if torch.min(y) < -1.0: - print("min value is ", torch.min(y)) - if torch.max(y) > 1.0: - print("max value is ", torch.max(y)) - - global mel_basis, hann_window - dtype_device = str(y.dtype) + "_" + str(y.device) - fmax_dtype_device = str(fmax) + "_" + dtype_device - wnsize_dtype_device = str(win_size) + "_" + dtype_device - if fmax_dtype_device not in mel_basis: - mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) - mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( - dtype=y.dtype, device=y.device - ) - if wnsize_dtype_device not in hann_window: - hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( - dtype=y.dtype, device=y.device - ) - - y = torch.nn.functional.pad( - y.unsqueeze(1), - (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), - mode="reflect", - ) - y = y.squeeze(1) - - # spec = torch.stft( - # y, - # n_fft, - # hop_length=hop_size, - # win_length=win_size, - # window=hann_window[wnsize_dtype_device], - # center=center, - # pad_mode="reflect", - # normalized=False, - # onesided=True, - # ) - spec = torch.stft( - y, - n_fft, - hop_length=hop_size, - win_length=win_size, - window=hann_window[wnsize_dtype_device], - center=center, - pad_mode="reflect", - normalized=False, - onesided=True, - return_complex=False, - ) - spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) - - spec = torch.matmul(mel_basis[fmax_dtype_device], spec) - spec = spectral_normalize_torch(spec) - - return spec +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center) + melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax) + return melspec \ No newline at end of file