diff --git a/infer-web.py b/infer-web.py index 751bf0f..5e2f69e 100644 --- a/infer-web.py +++ b/infer-web.py @@ -88,8 +88,8 @@ def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,file_big_np def vc_multi(sid,dir_path,opt_root,paths,f0_up_key,f0_method,file_index,file_big_npy,index_rate): try: - dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格 - opt_root=opt_root.strip(" ") + dir_path=dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")#防止小白拷路径头尾带了空格和"和回车 + opt_root=opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") os.makedirs(opt_root, exist_ok=True) try: if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)] @@ -115,9 +115,9 @@ def vc_multi(sid,dir_path,opt_root,paths,f0_up_key,f0_method,file_index,file_big def uvr(model_name,inp_root,save_root_vocal,paths,save_root_ins): infos = [] try: - inp_root = inp_root.strip(" ").strip("\n") - save_root_vocal = save_root_vocal.strip(" ").strip("\n") - save_root_ins = save_root_ins.strip(" ").strip("\n") + inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + save_root_vocal = save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") + save_root_ins = save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half) if (inp_root != ""):paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] else:paths = [path.name for path in paths] @@ -569,8 +569,8 @@ with gr.Blocks() as app: """) with gr.Row(): save_epoch10 = gr.Slider(minimum=0, maximum=50, step=1, label='保存频率save_every_epoch', value=5,interactive=True) - total_epoch11 = gr.Slider(minimum=0, maximum=100, step=1, label='总训练轮数total_epoch', value=10,interactive=True) - batch_size12 = gr.Slider(minimum=0, maximum=32, step=1, label='batch_size', value=4,interactive=True) + total_epoch11 = gr.Slider(minimum=0, maximum=1000, step=1, label='总训练轮数total_epoch', value=20,interactive=True) + batch_size12 = gr.Slider(minimum=0, maximum=32, step=1, label='每张显卡的batch_size', value=4,interactive=True) if_save_latest13 = gr.Radio(label="是否仅保存最新的ckpt文件以节省硬盘空间", choices=["是", "否"], value="否", interactive=True) if_cache_gpu17 = gr.Radio(label="是否缓存所有训练集至显存。10min以下小数据可缓存以加速训练,大数据缓存会炸显存也加不了多少速", choices=["是", "否"], value="否", interactive=True) with gr.Row():