From 615c30c17b771691e827bf3085e042d4162cf367 Mon Sep 17 00:00:00 2001 From: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com> Date: Sun, 21 May 2023 06:57:16 +0000 Subject: [PATCH] Update gui.py --- gui.py | 85 +++++++++++++++++++++++++++++++++++++--------------------- 1 file changed, 55 insertions(+), 30 deletions(-) diff --git a/gui.py b/gui.py index 1aed430..81d4d73 100644 --- a/gui.py +++ b/gui.py @@ -1,7 +1,20 @@ -import os, sys, traceback +''' +0416后的更新: + 引入config中half + 重建npy而不用填写 + v2支持 + 无f0模型支持 + 修复 + int16: + 增加无索引支持 + f0算法改harvest(怎么看就只有这个会影响CPU占用),但是不这么改效果不好 +''' +import os, sys, traceback now_dir = os.getcwd() sys.path.append(now_dir) +from config import Config +is_half=Config().is_half import PySimpleGUI as sg import sounddevice as sd import noisereduce as nr @@ -13,7 +26,7 @@ import torchaudio.transforms as tat import scipy.signal as signal # import matplotlib.pyplot as plt -from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono +from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono,SynthesizerTrnMs768NSFsid,SynthesizerTrnMs768NSFsid_nono from i18n import I18nAuto i18n = I18nAuto() @@ -50,20 +63,33 @@ class RVC: ) self.model = models[0] self.model = self.model.to(device) - self.model = self.model.half() + if(is_half==True): + self.model = self.model.half() + else: + self.model = self.model.float() self.model.eval() cpt = torch.load(pth_path, map_location="cpu") self.tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk self.if_f0 = cpt.get("f0", 1) - if self.if_f0 == 1: - self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True) - else: - self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) + self.version = cpt.get("version", "v1") + if version == "v1": + if if_f0 == 1: + net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) + else: + net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) + elif version == "v2": + if if_f0 == 1: + net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) + else: + net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) del self.net_g.enc_q print(self.net_g.load_state_dict(cpt["weight"], strict=False)) self.net_g.eval().to(device) - self.net_g.half() + if(is_half==True): + self.net_g=self.net_g.half() + else: + self.net_g=self.net_g.float() except: print(traceback.format_exc()) @@ -116,34 +142,33 @@ class RVC: inputs = { "source": feats.half().to(device), "padding_mask": padding_mask.to(device), - "output_layer": 9, # layer 9 + "output_layer": 9 if self.version == "v1" else 12, } torch.cuda.synchronize() with torch.no_grad(): logits = self.model.extract_features(**inputs) - feats = self.model.final_proj(logits[0]) + feats = model.final_proj(logits[0]) if self.version == "v1" else logits[0] ####索引优化 - if hasattr(self, "index") and hasattr(self, "big_npy") and self.index_rate != 0: - npy = feats[0].cpu().numpy().astype("float32") - - # _, I = self.index.search(npy, 1) - # npy = self.big_npy[I.squeeze()].astype("float16") - - score, ix = self.index.search(npy, k=8) - weight = np.square(1 / score) - weight /= weight.sum(axis=1, keepdims=True) - npy = np.sum( - self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1 - ).astype("float16") - - feats = ( - torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate - + (1 - self.index_rate) * feats - ) - else: - print("index search FAIL or disabled") - + try: + if hasattr(self, "index") and hasattr(self, "big_npy") and self.index_rate != 0: + npy = feats[0].cpu().numpy().astype("float32") + score, ix = self.index.search(npy, k=8) + weight = np.square(1 / score) + weight /= weight.sum(axis=1, keepdims=True) + npy = np.sum( + self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1 + ) + if(is_half==True):npy=npy.astype("float16") + feats = ( + torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate + + (1 - self.index_rate) * feats + ) + else: + print("index search FAIL or disabled") + except: + traceback.print_exc() + print("index search FAIL") feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) torch.cuda.synchronize() print(feats.shape)