mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 12:35:04 +08:00
Format code (#275)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
32437314b8
commit
6a3eaef090
@ -1,4 +1,5 @@
|
|||||||
import os, traceback, sys, parselmouth
|
import os, traceback, sys, parselmouth
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
from my_utils import load_audio
|
from my_utils import load_audio
|
||||||
@ -35,7 +36,7 @@ class FeatureInput(object):
|
|||||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||||
|
|
||||||
def compute_f0(self, path, f0_method):
|
def compute_f0(self, path, f0_method):
|
||||||
x=load_audio(path,self.fs)
|
x = load_audio(path, self.fs)
|
||||||
p_len = x.shape[0] // self.hop
|
p_len = x.shape[0] // self.hop
|
||||||
if f0_method == "pm":
|
if f0_method == "pm":
|
||||||
time_step = 160 / 16000 * 1000
|
time_step = 160 / 16000 * 1000
|
||||||
|
@ -18,9 +18,12 @@ from fairseq import checkpoint_utils
|
|||||||
|
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
|
||||||
if torch.cuda.is_available():device="cuda"
|
if torch.cuda.is_available():
|
||||||
elif torch.backends.mps.is_available():device="mps"
|
device = "cuda"
|
||||||
else:device="cpu"
|
elif torch.backends.mps.is_available():
|
||||||
|
device = "mps"
|
||||||
|
else:
|
||||||
|
device = "cpu"
|
||||||
|
|
||||||
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
||||||
|
|
||||||
@ -36,7 +39,9 @@ model_path = "hubert_base.pt"
|
|||||||
|
|
||||||
printt(exp_dir)
|
printt(exp_dir)
|
||||||
wavPath = "%s/1_16k_wavs" % exp_dir
|
wavPath = "%s/1_16k_wavs" % exp_dir
|
||||||
outPath = "%s/3_feature256" % exp_dir if version=="v1"else "%s/3_feature768" % exp_dir
|
outPath = (
|
||||||
|
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
|
||||||
|
)
|
||||||
os.makedirs(outPath, exist_ok=True)
|
os.makedirs(outPath, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
@ -64,7 +69,7 @@ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|||||||
model = models[0]
|
model = models[0]
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
printt("move model to %s" % device)
|
printt("move model to %s" % device)
|
||||||
if device not in ["mps","cpu"]:
|
if device not in ["mps", "cpu"]:
|
||||||
model = model.half()
|
model = model.half()
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
@ -90,11 +95,13 @@ else:
|
|||||||
if device not in ["mps", "cpu"]
|
if device not in ["mps", "cpu"]
|
||||||
else feats.to(device),
|
else feats.to(device),
|
||||||
"padding_mask": padding_mask.to(device),
|
"padding_mask": padding_mask.to(device),
|
||||||
"output_layer": 9 if version=="v1"else 12, # layer 9
|
"output_layer": 9 if version == "v1" else 12, # layer 9
|
||||||
}
|
}
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model.extract_features(**inputs)
|
logits = model.extract_features(**inputs)
|
||||||
feats = model.final_proj(logits[0])if version=="v1"else logits[0]
|
feats = (
|
||||||
|
model.final_proj(logits[0]) if version == "v1" else logits[0]
|
||||||
|
)
|
||||||
|
|
||||||
feats = feats.squeeze(0).float().cpu().numpy()
|
feats = feats.squeeze(0).float().cpu().numpy()
|
||||||
if np.isnan(feats).sum() == 0:
|
if np.isnan(feats).sum() == 0:
|
||||||
|
271
infer-web.py
271
infer-web.py
@ -1,5 +1,6 @@
|
|||||||
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
||||||
os.environ["no_proxy"]="localhost, 127.0.0.1, ::1"
|
|
||||||
|
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||||||
from multiprocessing import cpu_count
|
from multiprocessing import cpu_count
|
||||||
import threading
|
import threading
|
||||||
from time import sleep
|
from time import sleep
|
||||||
@ -11,8 +12,8 @@ now_dir = os.getcwd()
|
|||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
tmp = os.path.join(now_dir, "TEMP")
|
tmp = os.path.join(now_dir, "TEMP")
|
||||||
shutil.rmtree(tmp, ignore_errors=True)
|
shutil.rmtree(tmp, ignore_errors=True)
|
||||||
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack"%(now_dir), ignore_errors=True)
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
||||||
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack"%(now_dir) , ignore_errors=True)
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
||||||
os.makedirs(tmp, exist_ok=True)
|
os.makedirs(tmp, exist_ok=True)
|
||||||
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
||||||
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
||||||
@ -70,7 +71,12 @@ else:
|
|||||||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||||||
default_batch_size = 1
|
default_batch_size = 1
|
||||||
gpus = "-".join([i[0] for i in gpu_infos])
|
gpus = "-".join([i[0] for i in gpu_infos])
|
||||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono,SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono
|
from infer_pack.models import (
|
||||||
|
SynthesizerTrnMs256NSFsid,
|
||||||
|
SynthesizerTrnMs256NSFsid_nono,
|
||||||
|
SynthesizerTrnMs768NSFsid,
|
||||||
|
SynthesizerTrnMs768NSFsid_nono,
|
||||||
|
)
|
||||||
from scipy.io import wavfile
|
from scipy.io import wavfile
|
||||||
from fairseq import checkpoint_utils
|
from fairseq import checkpoint_utils
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
@ -121,11 +127,11 @@ names = []
|
|||||||
for name in os.listdir(weight_root):
|
for name in os.listdir(weight_root):
|
||||||
if name.endswith(".pth"):
|
if name.endswith(".pth"):
|
||||||
names.append(name)
|
names.append(name)
|
||||||
index_paths=[]
|
index_paths = []
|
||||||
for root, dirs, files in os.walk(index_root, topdown=False):
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
||||||
for name in files:
|
for name in files:
|
||||||
if name.endswith(".index") and "trained" not in name:
|
if name.endswith(".index") and "trained" not in name:
|
||||||
index_paths.append("%s/%s"%(root,name))
|
index_paths.append("%s/%s" % (root, name))
|
||||||
uvr5_names = []
|
uvr5_names = []
|
||||||
for name in os.listdir(weight_uvr5_root):
|
for name in os.listdir(weight_uvr5_root):
|
||||||
if name.endswith(".pth"):
|
if name.endswith(".pth"):
|
||||||
@ -144,29 +150,33 @@ def vc_single(
|
|||||||
index_rate,
|
index_rate,
|
||||||
filter_radius,
|
filter_radius,
|
||||||
resample_sr,
|
resample_sr,
|
||||||
rms_mix_rate
|
rms_mix_rate,
|
||||||
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
||||||
global tgt_sr, net_g, vc, hubert_model,version
|
global tgt_sr, net_g, vc, hubert_model, version
|
||||||
if input_audio_path is None:
|
if input_audio_path is None:
|
||||||
return "You need to upload an audio", None
|
return "You need to upload an audio", None
|
||||||
f0_up_key = int(f0_up_key)
|
f0_up_key = int(f0_up_key)
|
||||||
try:
|
try:
|
||||||
audio = load_audio(input_audio_path, 16000)
|
audio = load_audio(input_audio_path, 16000)
|
||||||
audio_max=np.abs(audio).max()/0.95
|
audio_max = np.abs(audio).max() / 0.95
|
||||||
if(audio_max>1):
|
if audio_max > 1:
|
||||||
audio/=audio_max
|
audio /= audio_max
|
||||||
times = [0, 0, 0]
|
times = [0, 0, 0]
|
||||||
if hubert_model == None:
|
if hubert_model == None:
|
||||||
load_hubert()
|
load_hubert()
|
||||||
if_f0 = cpt.get("f0", 1)
|
if_f0 = cpt.get("f0", 1)
|
||||||
file_index = (
|
file_index = (
|
||||||
|
(
|
||||||
file_index.strip(" ")
|
file_index.strip(" ")
|
||||||
.strip('"')
|
.strip('"')
|
||||||
.strip("\n")
|
.strip("\n")
|
||||||
.strip('"')
|
.strip('"')
|
||||||
.strip(" ")
|
.strip(" ")
|
||||||
.replace("trained", "added")
|
.replace("trained", "added")
|
||||||
)if file_index!=""else file_index2 # 防止小白写错,自动帮他替换掉
|
)
|
||||||
|
if file_index != ""
|
||||||
|
else file_index2
|
||||||
|
) # 防止小白写错,自动帮他替换掉
|
||||||
# file_big_npy = (
|
# file_big_npy = (
|
||||||
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||||
# )
|
# )
|
||||||
@ -190,10 +200,19 @@ def vc_single(
|
|||||||
version,
|
version,
|
||||||
f0_file=f0_file,
|
f0_file=f0_file,
|
||||||
)
|
)
|
||||||
if(resample_sr>=16000 and tgt_sr!=resample_sr):
|
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
||||||
tgt_sr=resample_sr
|
tgt_sr = resample_sr
|
||||||
index_info="Using index:%s."%file_index if os.path.exists(file_index)else"Index not used."
|
index_info = (
|
||||||
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss"%(index_info,times[0],times[1],times[2]), (tgt_sr, audio_opt)
|
"Using index:%s." % file_index
|
||||||
|
if os.path.exists(file_index)
|
||||||
|
else "Index not used."
|
||||||
|
)
|
||||||
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
||||||
|
index_info,
|
||||||
|
times[0],
|
||||||
|
times[1],
|
||||||
|
times[2],
|
||||||
|
), (tgt_sr, audio_opt)
|
||||||
except:
|
except:
|
||||||
info = traceback.format_exc()
|
info = traceback.format_exc()
|
||||||
print(info)
|
print(info)
|
||||||
@ -213,7 +232,7 @@ def vc_multi(
|
|||||||
index_rate,
|
index_rate,
|
||||||
filter_radius,
|
filter_radius,
|
||||||
resample_sr,
|
resample_sr,
|
||||||
rms_mix_rate
|
rms_mix_rate,
|
||||||
):
|
):
|
||||||
try:
|
try:
|
||||||
dir_path = (
|
dir_path = (
|
||||||
@ -243,9 +262,9 @@ def vc_multi(
|
|||||||
index_rate,
|
index_rate,
|
||||||
filter_radius,
|
filter_radius,
|
||||||
resample_sr,
|
resample_sr,
|
||||||
rms_mix_rate
|
rms_mix_rate,
|
||||||
)
|
)
|
||||||
if "Success"in info:
|
if "Success" in info:
|
||||||
try:
|
try:
|
||||||
tgt_sr, audio_opt = opt
|
tgt_sr, audio_opt = opt
|
||||||
wavfile.write(
|
wavfile.write(
|
||||||
@ -330,8 +349,8 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
|
|||||||
|
|
||||||
# 一个选项卡全局只能有一个音色
|
# 一个选项卡全局只能有一个音色
|
||||||
def get_vc(sid):
|
def get_vc(sid):
|
||||||
global n_spk, tgt_sr, net_g, vc, cpt,version
|
global n_spk, tgt_sr, net_g, vc, cpt, version
|
||||||
if sid == ""or sid==[]:
|
if sid == "" or sid == []:
|
||||||
global hubert_model
|
global hubert_model
|
||||||
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
||||||
print("clean_empty_cache")
|
print("clean_empty_cache")
|
||||||
@ -342,14 +361,18 @@ def get_vc(sid):
|
|||||||
###楼下不这么折腾清理不干净
|
###楼下不这么折腾清理不干净
|
||||||
if_f0 = cpt.get("f0", 1)
|
if_f0 = cpt.get("f0", 1)
|
||||||
version = cpt.get("version", "v1")
|
version = cpt.get("version", "v1")
|
||||||
if (version == "v1"):
|
if version == "v1":
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
net_g = SynthesizerTrnMs256NSFsid(
|
||||||
|
*cpt["config"], is_half=config.is_half
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||||
elif (version == "v2"):
|
elif version == "v2":
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
net_g = SynthesizerTrnMs768NSFsid(
|
||||||
|
*cpt["config"], is_half=config.is_half
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||||||
del net_g, cpt
|
del net_g, cpt
|
||||||
@ -364,12 +387,12 @@ def get_vc(sid):
|
|||||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||||
if_f0 = cpt.get("f0", 1)
|
if_f0 = cpt.get("f0", 1)
|
||||||
version = cpt.get("version", "v1")
|
version = cpt.get("version", "v1")
|
||||||
if(version=="v1"):
|
if version == "v1":
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
||||||
else:
|
else:
|
||||||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||||
elif(version=="v2"):
|
elif version == "v2":
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
||||||
else:
|
else:
|
||||||
@ -391,17 +414,21 @@ def change_choices():
|
|||||||
for name in os.listdir(weight_root):
|
for name in os.listdir(weight_root):
|
||||||
if name.endswith(".pth"):
|
if name.endswith(".pth"):
|
||||||
names.append(name)
|
names.append(name)
|
||||||
index_paths=[]
|
index_paths = []
|
||||||
for root, dirs, files in os.walk(index_root, topdown=False):
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
||||||
for name in files:
|
for name in files:
|
||||||
if name.endswith(".index") and "trained" not in name:
|
if name.endswith(".index") and "trained" not in name:
|
||||||
index_paths.append("%s/%s" % (root, name))
|
index_paths.append("%s/%s" % (root, name))
|
||||||
return {"choices": sorted(names), "__type__": "update"},{"choices": sorted(index_paths), "__type__": "update"}
|
return {"choices": sorted(names), "__type__": "update"}, {
|
||||||
|
"choices": sorted(index_paths),
|
||||||
|
"__type__": "update",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def clean():
|
def clean():
|
||||||
return {"value": "", "__type__": "update"}
|
return {"value": "", "__type__": "update"}
|
||||||
|
|
||||||
|
|
||||||
sr_dict = {
|
sr_dict = {
|
||||||
"32k": 32000,
|
"32k": 32000,
|
||||||
"40k": 40000,
|
"40k": 40000,
|
||||||
@ -468,7 +495,7 @@ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|||||||
|
|
||||||
|
|
||||||
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
||||||
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir,version19):
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19):
|
||||||
gpus = gpus.split("-")
|
gpus = gpus.split("-")
|
||||||
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
||||||
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
||||||
@ -514,7 +541,10 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir,version19):
|
|||||||
leng = len(gpus)
|
leng = len(gpus)
|
||||||
ps = []
|
ps = []
|
||||||
for idx, n_g in enumerate(gpus):
|
for idx, n_g in enumerate(gpus):
|
||||||
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s %s" % (
|
cmd = (
|
||||||
|
config.python_cmd
|
||||||
|
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
||||||
|
% (
|
||||||
config.device,
|
config.device,
|
||||||
leng,
|
leng,
|
||||||
idx,
|
idx,
|
||||||
@ -523,6 +553,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir,version19):
|
|||||||
exp_dir,
|
exp_dir,
|
||||||
version19,
|
version19,
|
||||||
)
|
)
|
||||||
|
)
|
||||||
print(cmd)
|
print(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
cmd, shell=True, cwd=now_dir
|
cmd, shell=True, cwd=now_dir
|
||||||
@ -549,34 +580,47 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir,version19):
|
|||||||
yield log
|
yield log
|
||||||
|
|
||||||
|
|
||||||
def change_sr2(sr2, if_f0_3,version19):
|
def change_sr2(sr2, if_f0_3, version19):
|
||||||
vis_v=True if sr2=="40k"else False
|
vis_v = True if sr2 == "40k" else False
|
||||||
if(sr2!="40k"):version19="v1"
|
if sr2 != "40k":
|
||||||
path_str=""if version19=="v1"else "_v2"
|
version19 = "v1"
|
||||||
version_state={"visible": vis_v, "__type__": "update"}
|
path_str = "" if version19 == "v1" else "_v2"
|
||||||
if(vis_v==False):version_state["value"]="v1"
|
version_state = {"visible": vis_v, "__type__": "update"}
|
||||||
f0_str="f0"if if_f0_3 else""
|
if vis_v == False:
|
||||||
return "pretrained%s/%sG%s.pth" % (path_str,f0_str,sr2), "pretrained%s/%sD%s.pth" % (path_str,f0_str,sr2),version_state
|
version_state["value"] = "v1"
|
||||||
|
f0_str = "f0" if if_f0_3 else ""
|
||||||
|
return (
|
||||||
|
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||||||
|
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||||||
|
version_state,
|
||||||
|
)
|
||||||
|
|
||||||
def change_version19(sr2,if_f0_3,version19):
|
|
||||||
path_str=""if version19=="v1"else "_v2"
|
|
||||||
f0_str="f0"if if_f0_3 else""
|
|
||||||
return "pretrained%s/%sG%s.pth" % (path_str,f0_str,sr2), "pretrained%s/%sD%s.pth" % (path_str,f0_str,sr2)
|
|
||||||
|
|
||||||
def change_f0(if_f0_3, sr2,version19): # f0method8,pretrained_G14,pretrained_D15
|
def change_version19(sr2, if_f0_3, version19):
|
||||||
path_str=""if version19=="v1"else "_v2"
|
path_str = "" if version19 == "v1" else "_v2"
|
||||||
|
f0_str = "f0" if if_f0_3 else ""
|
||||||
|
return "pretrained%s/%sG%s.pth" % (
|
||||||
|
path_str,
|
||||||
|
f0_str,
|
||||||
|
sr2,
|
||||||
|
), "pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
||||||
|
|
||||||
|
|
||||||
|
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
||||||
|
path_str = "" if version19 == "v1" else "_v2"
|
||||||
if if_f0_3:
|
if if_f0_3:
|
||||||
return (
|
return (
|
||||||
{"visible": True, "__type__": "update"},
|
{"visible": True, "__type__": "update"},
|
||||||
"pretrained%s/f0G%s.pth" % (path_str,sr2),
|
"pretrained%s/f0G%s.pth" % (path_str, sr2),
|
||||||
"pretrained%s/f0D%s.pth" % (path_str,sr2),
|
"pretrained%s/f0D%s.pth" % (path_str, sr2),
|
||||||
)
|
)
|
||||||
return (
|
return (
|
||||||
{"visible": False, "__type__": "update"},
|
{"visible": False, "__type__": "update"},
|
||||||
"pretrained%s/G%s.pth" % (path_str,sr2),
|
"pretrained%s/G%s.pth" % (path_str, sr2),
|
||||||
"pretrained%s/D%s.pth" % (path_str,sr2),
|
"pretrained%s/D%s.pth" % (path_str, sr2),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
||||||
def click_train(
|
def click_train(
|
||||||
exp_dir1,
|
exp_dir1,
|
||||||
@ -598,7 +642,11 @@ def click_train(
|
|||||||
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||||||
os.makedirs(exp_dir, exist_ok=True)
|
os.makedirs(exp_dir, exist_ok=True)
|
||||||
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
||||||
feature_dir = "%s/3_feature256" % (exp_dir)if version19=="v1"else "%s/3_feature768" % (exp_dir)
|
feature_dir = (
|
||||||
|
"%s/3_feature256" % (exp_dir)
|
||||||
|
if version19 == "v1"
|
||||||
|
else "%s/3_feature768" % (exp_dir)
|
||||||
|
)
|
||||||
if if_f0_3:
|
if if_f0_3:
|
||||||
f0_dir = "%s/2a_f0" % (exp_dir)
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
||||||
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
||||||
@ -640,18 +688,18 @@ def click_train(
|
|||||||
spk_id5,
|
spk_id5,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
fea_dim = 256 if version19 == "v1"else 768
|
fea_dim = 256 if version19 == "v1" else 768
|
||||||
if if_f0_3:
|
if if_f0_3:
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
opt.append(
|
opt.append(
|
||||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
||||||
% (now_dir, sr2, now_dir,fea_dim, now_dir, now_dir, spk_id5)
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
opt.append(
|
opt.append(
|
||||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
||||||
% (now_dir, sr2, now_dir,fea_dim, spk_id5)
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
||||||
)
|
)
|
||||||
shuffle(opt)
|
shuffle(opt)
|
||||||
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
||||||
@ -706,10 +754,14 @@ def click_train(
|
|||||||
|
|
||||||
|
|
||||||
# but4.click(train_index, [exp_dir1], info3)
|
# but4.click(train_index, [exp_dir1], info3)
|
||||||
def train_index(exp_dir1,version19):
|
def train_index(exp_dir1, version19):
|
||||||
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||||||
os.makedirs(exp_dir, exist_ok=True)
|
os.makedirs(exp_dir, exist_ok=True)
|
||||||
feature_dir = "%s/3_feature256" % (exp_dir)if version19=="v1"else "%s/3_feature768" % (exp_dir)
|
feature_dir = (
|
||||||
|
"%s/3_feature256" % (exp_dir)
|
||||||
|
if version19 == "v1"
|
||||||
|
else "%s/3_feature768" % (exp_dir)
|
||||||
|
)
|
||||||
if os.path.exists(feature_dir) == False:
|
if os.path.exists(feature_dir) == False:
|
||||||
return "请先进行特征提取!"
|
return "请先进行特征提取!"
|
||||||
listdir_res = list(os.listdir(feature_dir))
|
listdir_res = list(os.listdir(feature_dir))
|
||||||
@ -729,7 +781,7 @@ def train_index(exp_dir1,version19):
|
|||||||
infos = []
|
infos = []
|
||||||
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
||||||
yield "\n".join(infos)
|
yield "\n".join(infos)
|
||||||
index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,Flat" % n_ivf)
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
||||||
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
||||||
infos.append("training")
|
infos.append("training")
|
||||||
yield "\n".join(infos)
|
yield "\n".join(infos)
|
||||||
@ -738,7 +790,8 @@ def train_index(exp_dir1,version19):
|
|||||||
index.train(big_npy)
|
index.train(big_npy)
|
||||||
faiss.write_index(
|
faiss.write_index(
|
||||||
index,
|
index,
|
||||||
"%s/trained_IVF%s_Flat_nprobe_%s_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe,version19),
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s.index"
|
||||||
|
% (exp_dir, n_ivf, index_ivf.nprobe, version19),
|
||||||
)
|
)
|
||||||
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
||||||
infos.append("adding")
|
infos.append("adding")
|
||||||
@ -750,7 +803,10 @@ def train_index(exp_dir1,version19):
|
|||||||
index,
|
index,
|
||||||
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
||||||
)
|
)
|
||||||
infos.append("成功构建索引,added_IVF%s_Flat_nprobe_%s_%s.index" % (n_ivf, index_ivf.nprobe,version19))
|
infos.append(
|
||||||
|
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s.index"
|
||||||
|
% (n_ivf, index_ivf.nprobe, version19)
|
||||||
|
)
|
||||||
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
||||||
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
||||||
yield "\n".join(infos)
|
yield "\n".join(infos)
|
||||||
@ -786,7 +842,11 @@ def train1key(
|
|||||||
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
||||||
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
||||||
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
||||||
feature_dir = "%s/3_feature256" % model_log_dir if version19=="v1"else "%s/3_feature768" % model_log_dir
|
feature_dir = (
|
||||||
|
"%s/3_feature256" % model_log_dir
|
||||||
|
if version19 == "v1"
|
||||||
|
else "%s/3_feature768" % model_log_dir
|
||||||
|
)
|
||||||
|
|
||||||
os.makedirs(model_log_dir, exist_ok=True)
|
os.makedirs(model_log_dir, exist_ok=True)
|
||||||
#########step1:处理数据
|
#########step1:处理数据
|
||||||
@ -830,7 +890,8 @@ def train1key(
|
|||||||
leng,
|
leng,
|
||||||
idx,
|
idx,
|
||||||
n_g,
|
n_g,
|
||||||
model_log_dir,version19,
|
model_log_dir,
|
||||||
|
version19,
|
||||||
)
|
)
|
||||||
yield get_info_str(cmd)
|
yield get_info_str(cmd)
|
||||||
p = Popen(
|
p = Popen(
|
||||||
@ -885,18 +946,18 @@ def train1key(
|
|||||||
spk_id5,
|
spk_id5,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
fea_dim=256 if version19=="v1"else 768
|
fea_dim = 256 if version19 == "v1" else 768
|
||||||
if if_f0_3:
|
if if_f0_3:
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
opt.append(
|
opt.append(
|
||||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
||||||
% (now_dir, sr2, now_dir,fea_dim, now_dir, now_dir, spk_id5)
|
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
opt.append(
|
opt.append(
|
||||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
||||||
% (now_dir, sr2, now_dir,fea_dim, spk_id5)
|
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
||||||
)
|
)
|
||||||
shuffle(opt)
|
shuffle(opt)
|
||||||
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
||||||
@ -961,7 +1022,7 @@ def train1key(
|
|||||||
# n_ivf = big_npy.shape[0] // 39
|
# n_ivf = big_npy.shape[0] // 39
|
||||||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||||||
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
||||||
index = faiss.index_factory(256 if version19=="v1"else 768, "IVF%s,Flat" % n_ivf)
|
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
||||||
yield get_info_str("training index")
|
yield get_info_str("training index")
|
||||||
index_ivf = faiss.extract_index_ivf(index) #
|
index_ivf = faiss.extract_index_ivf(index) #
|
||||||
index_ivf.nprobe = 1
|
index_ivf.nprobe = 1
|
||||||
@ -969,7 +1030,7 @@ def train1key(
|
|||||||
faiss.write_index(
|
faiss.write_index(
|
||||||
index,
|
index,
|
||||||
"%s/trained_IVF%s_Flat_nprobe_%s_%s.index"
|
"%s/trained_IVF%s_Flat_nprobe_%s_%s.index"
|
||||||
% (model_log_dir, n_ivf, index_ivf.nprobe,version19),
|
% (model_log_dir, n_ivf, index_ivf.nprobe, version19),
|
||||||
)
|
)
|
||||||
yield get_info_str("adding index")
|
yield get_info_str("adding index")
|
||||||
batch_size_add = 8192
|
batch_size_add = 8192
|
||||||
@ -978,10 +1039,11 @@ def train1key(
|
|||||||
faiss.write_index(
|
faiss.write_index(
|
||||||
index,
|
index,
|
||||||
"%s/added_IVF%s_Flat_nprobe_%s_%s.index"
|
"%s/added_IVF%s_Flat_nprobe_%s_%s.index"
|
||||||
% (model_log_dir, n_ivf, index_ivf.nprobe,version19),
|
% (model_log_dir, n_ivf, index_ivf.nprobe, version19),
|
||||||
)
|
)
|
||||||
yield get_info_str(
|
yield get_info_str(
|
||||||
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s.index" % (n_ivf, index_ivf.nprobe,version19)
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s.index"
|
||||||
|
% (n_ivf, index_ivf.nprobe, version19)
|
||||||
)
|
)
|
||||||
yield get_info_str(i18n("全流程结束!"))
|
yield get_info_str(i18n("全流程结束!"))
|
||||||
|
|
||||||
@ -999,8 +1061,8 @@ def change_info_(ckpt_path):
|
|||||||
) as f:
|
) as f:
|
||||||
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
||||||
sr, f0 = info["sample_rate"], info["if_f0"]
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
||||||
version="v2"if("version"in info and info["version"]=="v2")else"v1"
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
||||||
return sr, str(f0),version
|
return sr, str(f0), version
|
||||||
except:
|
except:
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
||||||
@ -1136,7 +1198,7 @@ with gr.Blocks() as app:
|
|||||||
value="pm",
|
value="pm",
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
filter_radius0=gr.Slider(
|
filter_radius0 = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=7,
|
maximum=7,
|
||||||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||||||
@ -1155,7 +1217,9 @@ with gr.Blocks() as app:
|
|||||||
choices=sorted(index_paths),
|
choices=sorted(index_paths),
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0, file_index2])
|
refresh_button.click(
|
||||||
|
fn=change_choices, inputs=[], outputs=[sid0, file_index2]
|
||||||
|
)
|
||||||
# file_big_npy1 = gr.Textbox(
|
# file_big_npy1 = gr.Textbox(
|
||||||
# label=i18n("特征文件路径"),
|
# label=i18n("特征文件路径"),
|
||||||
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
||||||
@ -1168,7 +1232,7 @@ with gr.Blocks() as app:
|
|||||||
value=0.76,
|
value=0.76,
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
resample_sr0=gr.Slider(
|
resample_sr0 = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=48000,
|
maximum=48000,
|
||||||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||||||
@ -1202,7 +1266,7 @@ with gr.Blocks() as app:
|
|||||||
index_rate1,
|
index_rate1,
|
||||||
filter_radius0,
|
filter_radius0,
|
||||||
resample_sr0,
|
resample_sr0,
|
||||||
rms_mix_rate0
|
rms_mix_rate0,
|
||||||
],
|
],
|
||||||
[vc_output1, vc_output2],
|
[vc_output1, vc_output2],
|
||||||
)
|
)
|
||||||
@ -1222,7 +1286,7 @@ with gr.Blocks() as app:
|
|||||||
value="pm",
|
value="pm",
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
filter_radius1=gr.Slider(
|
filter_radius1 = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=7,
|
maximum=7,
|
||||||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||||||
@ -1253,7 +1317,7 @@ with gr.Blocks() as app:
|
|||||||
value=1,
|
value=1,
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
resample_sr1=gr.Slider(
|
resample_sr1 = gr.Slider(
|
||||||
minimum=0,
|
minimum=0,
|
||||||
maximum=48000,
|
maximum=48000,
|
||||||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||||||
@ -1293,7 +1357,7 @@ with gr.Blocks() as app:
|
|||||||
index_rate2,
|
index_rate2,
|
||||||
filter_radius1,
|
filter_radius1,
|
||||||
resample_sr1,
|
resample_sr1,
|
||||||
rms_mix_rate1
|
rms_mix_rate1,
|
||||||
],
|
],
|
||||||
[vc_output3],
|
[vc_output3],
|
||||||
)
|
)
|
||||||
@ -1398,7 +1462,7 @@ with gr.Blocks() as app:
|
|||||||
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
||||||
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
||||||
but1.click(
|
but1.click(
|
||||||
preprocess_dataset, [trainset_dir4, exp_dir1, sr2,np7], [info1]
|
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
||||||
)
|
)
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
|
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
|
||||||
@ -1423,7 +1487,7 @@ with gr.Blocks() as app:
|
|||||||
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||||
but2.click(
|
but2.click(
|
||||||
extract_f0_feature,
|
extract_f0_feature,
|
||||||
[gpus6, np7, f0method8, if_f0_3, exp_dir1,version19],
|
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19],
|
||||||
[info2],
|
[info2],
|
||||||
)
|
)
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
@ -1468,9 +1532,7 @@ with gr.Blocks() as app:
|
|||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
if_save_every_weights18 = gr.Radio(
|
if_save_every_weights18 = gr.Radio(
|
||||||
label=i18n(
|
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
||||||
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
|
||||||
),
|
|
||||||
choices=[i18n("是"), i18n("否")],
|
choices=[i18n("是"), i18n("否")],
|
||||||
value=i18n("否"),
|
value=i18n("否"),
|
||||||
interactive=True,
|
interactive=True,
|
||||||
@ -1487,14 +1549,18 @@ with gr.Blocks() as app:
|
|||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
sr2.change(
|
sr2.change(
|
||||||
change_sr2, [sr2, if_f0_3,version19], [pretrained_G14, pretrained_D15,version19]
|
change_sr2,
|
||||||
|
[sr2, if_f0_3, version19],
|
||||||
|
[pretrained_G14, pretrained_D15, version19],
|
||||||
)
|
)
|
||||||
version19.change(
|
version19.change(
|
||||||
change_version19, [sr2, if_f0_3,version19], [pretrained_G14, pretrained_D15]
|
change_version19,
|
||||||
|
[sr2, if_f0_3, version19],
|
||||||
|
[pretrained_G14, pretrained_D15],
|
||||||
)
|
)
|
||||||
if_f0_3.change(
|
if_f0_3.change(
|
||||||
change_f0,
|
change_f0,
|
||||||
[if_f0_3, sr2,version19],
|
[if_f0_3, sr2, version19],
|
||||||
[f0method8, pretrained_G14, pretrained_D15],
|
[f0method8, pretrained_G14, pretrained_D15],
|
||||||
)
|
)
|
||||||
gpus16 = gr.Textbox(
|
gpus16 = gr.Textbox(
|
||||||
@ -1526,7 +1592,7 @@ with gr.Blocks() as app:
|
|||||||
],
|
],
|
||||||
info3,
|
info3,
|
||||||
)
|
)
|
||||||
but4.click(train_index, [exp_dir1,version19], info3)
|
but4.click(train_index, [exp_dir1, version19], info3)
|
||||||
but5.click(
|
but5.click(
|
||||||
train1key,
|
train1key,
|
||||||
[
|
[
|
||||||
@ -1586,7 +1652,7 @@ with gr.Blocks() as app:
|
|||||||
max_lines=1,
|
max_lines=1,
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
version_2=gr.Radio(
|
version_2 = gr.Radio(
|
||||||
label=i18n("模型版本型号"),
|
label=i18n("模型版本型号"),
|
||||||
choices=["v1", "v2"],
|
choices=["v1", "v2"],
|
||||||
value="v1",
|
value="v1",
|
||||||
@ -1597,7 +1663,16 @@ with gr.Blocks() as app:
|
|||||||
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||||
but6.click(
|
but6.click(
|
||||||
merge,
|
merge,
|
||||||
[ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0,version_2],
|
[
|
||||||
|
ckpt_a,
|
||||||
|
ckpt_b,
|
||||||
|
alpha_a,
|
||||||
|
sr_,
|
||||||
|
if_f0_,
|
||||||
|
info__,
|
||||||
|
name_to_save0,
|
||||||
|
version_2,
|
||||||
|
],
|
||||||
info4,
|
info4,
|
||||||
) # def merge(path1,path2,alpha1,sr,f0,info):
|
) # def merge(path1,path2,alpha1,sr,f0,info):
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
@ -1655,7 +1730,7 @@ with gr.Blocks() as app:
|
|||||||
value="1",
|
value="1",
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
version_1=gr.Radio(
|
version_1 = gr.Radio(
|
||||||
label=i18n("模型版本型号"),
|
label=i18n("模型版本型号"),
|
||||||
choices=["v1", "v2"],
|
choices=["v1", "v2"],
|
||||||
value="v1",
|
value="v1",
|
||||||
@ -1666,10 +1741,12 @@ with gr.Blocks() as app:
|
|||||||
)
|
)
|
||||||
but9 = gr.Button(i18n("提取"), variant="primary")
|
but9 = gr.Button(i18n("提取"), variant="primary")
|
||||||
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||||
ckpt_path2.change(change_info_, [ckpt_path2], [sr__, if_f0__,version_1])
|
ckpt_path2.change(
|
||||||
|
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
||||||
|
)
|
||||||
but9.click(
|
but9.click(
|
||||||
extract_small_model,
|
extract_small_model,
|
||||||
[ckpt_path2, save_name, sr__, if_f0__, info___,version_1],
|
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
||||||
info7,
|
info7,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1687,16 +1764,16 @@ with gr.Blocks() as app:
|
|||||||
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
||||||
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx)
|
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx)
|
||||||
|
|
||||||
tab_faq=i18n("常见问题解答")
|
tab_faq = i18n("常见问题解答")
|
||||||
with gr.TabItem(tab_faq):
|
with gr.TabItem(tab_faq):
|
||||||
try:
|
try:
|
||||||
if(tab_faq=="常见问题解答"):
|
if tab_faq == "常见问题解答":
|
||||||
with open("docs/faq.md","r",encoding="utf8")as f:info=f.read()
|
with open("docs/faq.md", "r", encoding="utf8") as f:
|
||||||
|
info = f.read()
|
||||||
else:
|
else:
|
||||||
with open("docs/faq_en.md", "r")as f:info = f.read()
|
with open("docs/faq_en.md", "r") as f:
|
||||||
gr.Markdown(
|
info = f.read()
|
||||||
value=info
|
gr.Markdown(value=info)
|
||||||
)
|
|
||||||
except:
|
except:
|
||||||
gr.Markdown(traceback.format_exc())
|
gr.Markdown(traceback.format_exc())
|
||||||
|
|
||||||
|
@ -59,6 +59,8 @@ class TextEncoder256(nn.Module):
|
|||||||
|
|
||||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
return m, logs, x_mask
|
return m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
class TextEncoder768(nn.Module):
|
class TextEncoder768(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -105,6 +107,7 @@ class TextEncoder768(nn.Module):
|
|||||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
return m, logs, x_mask
|
return m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
class ResidualCouplingBlock(nn.Module):
|
class ResidualCouplingBlock(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -635,6 +638,8 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs768NSFsid(nn.Module):
|
class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -846,6 +851,8 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -977,11 +984,12 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
|||||||
|
|
||||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
||||||
def __init__(self, use_spectral_norm=False):
|
def __init__(self, use_spectral_norm=False):
|
||||||
super(MultiPeriodDiscriminatorV2, self).__init__()
|
super(MultiPeriodDiscriminatorV2, self).__init__()
|
||||||
# periods = [2, 3, 5, 7, 11, 17]
|
# periods = [2, 3, 5, 7, 11, 17]
|
||||||
periods = [2,3, 5, 7, 11, 17, 23, 37]
|
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
||||||
|
|
||||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||||
discs = discs + [
|
discs = discs + [
|
||||||
|
@ -2,7 +2,7 @@ import torch, traceback, os, pdb
|
|||||||
from collections import OrderedDict
|
from collections import OrderedDict
|
||||||
|
|
||||||
|
|
||||||
def savee(ckpt, sr, if_f0, name, epoch,version):
|
def savee(ckpt, sr, if_f0, name, epoch, version):
|
||||||
try:
|
try:
|
||||||
opt = OrderedDict()
|
opt = OrderedDict()
|
||||||
opt["weight"] = {}
|
opt["weight"] = {}
|
||||||
@ -96,7 +96,7 @@ def show_info(path):
|
|||||||
return traceback.format_exc()
|
return traceback.format_exc()
|
||||||
|
|
||||||
|
|
||||||
def extract_small_model(path, name, sr, if_f0, info,version):
|
def extract_small_model(path, name, sr, if_f0, info, version):
|
||||||
try:
|
try:
|
||||||
ckpt = torch.load(path, map_location="cpu")
|
ckpt = torch.load(path, map_location="cpu")
|
||||||
if "model" in ckpt:
|
if "model" in ckpt:
|
||||||
@ -194,7 +194,7 @@ def change_info(path, info, name):
|
|||||||
return traceback.format_exc()
|
return traceback.format_exc()
|
||||||
|
|
||||||
|
|
||||||
def merge(path1, path2, alpha1, sr, f0, info, name,version):
|
def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
||||||
try:
|
try:
|
||||||
|
|
||||||
def extract(ckpt):
|
def extract(ckpt):
|
||||||
|
@ -322,7 +322,11 @@ def get_hparams(init=True):
|
|||||||
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"-sw", "--save_every_weights", type=str, default="0", help="save the extracted model in weights directory when saving checkpoints"
|
"-sw",
|
||||||
|
"--save_every_weights",
|
||||||
|
type=str,
|
||||||
|
default="0",
|
||||||
|
help="save the extracted model in weights directory when saving checkpoints",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"-v", "--version", type=str, required=True, help="model version"
|
"-v", "--version", type=str, required=True, help="model version"
|
||||||
|
@ -31,7 +31,8 @@ from data_utils import (
|
|||||||
TextAudioCollate,
|
TextAudioCollate,
|
||||||
DistributedBucketSampler,
|
DistributedBucketSampler,
|
||||||
)
|
)
|
||||||
if(hps.version=="v1"):
|
|
||||||
|
if hps.version == "v1":
|
||||||
from infer_pack.models import (
|
from infer_pack.models import (
|
||||||
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
|
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
|
||||||
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
||||||
@ -519,14 +520,25 @@ def train_and_evaluate(
|
|||||||
epoch,
|
epoch,
|
||||||
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
||||||
)
|
)
|
||||||
if(rank==0 and hps.save_every_weights=="1"):
|
if rank == 0 and hps.save_every_weights == "1":
|
||||||
if hasattr(net_g, "module"):
|
if hasattr(net_g, "module"):
|
||||||
ckpt = net_g.module.state_dict()
|
ckpt = net_g.module.state_dict()
|
||||||
else:
|
else:
|
||||||
ckpt = net_g.state_dict()
|
ckpt = net_g.state_dict()
|
||||||
logger.info(
|
logger.info(
|
||||||
"saving ckpt %s_e%s:%s"
|
"saving ckpt %s_e%s:%s"
|
||||||
% (hps.name,epoch,savee(ckpt, hps.sample_rate, hps.if_f0, hps.name+"_e%s"%epoch, epoch,hps.version))
|
% (
|
||||||
|
hps.name,
|
||||||
|
epoch,
|
||||||
|
savee(
|
||||||
|
ckpt,
|
||||||
|
hps.sample_rate,
|
||||||
|
hps.if_f0,
|
||||||
|
hps.name + "_e%s" % epoch,
|
||||||
|
epoch,
|
||||||
|
hps.version,
|
||||||
|
),
|
||||||
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
if rank == 0:
|
if rank == 0:
|
||||||
@ -540,7 +552,7 @@ def train_and_evaluate(
|
|||||||
ckpt = net_g.state_dict()
|
ckpt = net_g.state_dict()
|
||||||
logger.info(
|
logger.info(
|
||||||
"saving final ckpt:%s"
|
"saving final ckpt:%s"
|
||||||
% (savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch,hps.version))
|
% (savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version))
|
||||||
)
|
)
|
||||||
sleep(1)
|
sleep(1)
|
||||||
os._exit(2333333)
|
os._exit(2333333)
|
||||||
|
@ -2,16 +2,18 @@ import numpy as np, parselmouth, torch, pdb
|
|||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import scipy.signal as signal
|
import scipy.signal as signal
|
||||||
import pyworld, os, traceback, faiss,librosa
|
import pyworld, os, traceback, faiss, librosa
|
||||||
from scipy import signal
|
from scipy import signal
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
|
|
||||||
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
||||||
|
|
||||||
input_audio_path2wav={}
|
input_audio_path2wav = {}
|
||||||
|
|
||||||
|
|
||||||
@lru_cache
|
@lru_cache
|
||||||
def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
|
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
||||||
audio=input_audio_path2wav[input_audio_path]
|
audio = input_audio_path2wav[input_audio_path]
|
||||||
f0, t = pyworld.harvest(
|
f0, t = pyworld.harvest(
|
||||||
audio,
|
audio,
|
||||||
fs=fs,
|
fs=fs,
|
||||||
@ -22,18 +24,29 @@ def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
|
|||||||
f0 = pyworld.stonemask(audio, f0, t, fs)
|
f0 = pyworld.stonemask(audio, f0, t, fs)
|
||||||
return f0
|
return f0
|
||||||
|
|
||||||
def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
|
|
||||||
|
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
||||||
# print(data1.max(),data2.max())
|
# print(data1.max(),data2.max())
|
||||||
rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
|
rms1 = librosa.feature.rms(
|
||||||
rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
|
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
||||||
rms1=torch.from_numpy(rms1)
|
) # 每半秒一个点
|
||||||
rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
||||||
rms2=torch.from_numpy(rms2)
|
rms1 = torch.from_numpy(rms1)
|
||||||
rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
rms1 = F.interpolate(
|
||||||
rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
|
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
||||||
data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
|
).squeeze()
|
||||||
|
rms2 = torch.from_numpy(rms2)
|
||||||
|
rms2 = F.interpolate(
|
||||||
|
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
||||||
|
).squeeze()
|
||||||
|
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
||||||
|
data2 *= (
|
||||||
|
torch.pow(rms1, torch.tensor(1 - rate))
|
||||||
|
* torch.pow(rms2, torch.tensor(rate - 1))
|
||||||
|
).numpy()
|
||||||
return data2
|
return data2
|
||||||
|
|
||||||
|
|
||||||
class VC(object):
|
class VC(object):
|
||||||
def __init__(self, tgt_sr, config):
|
def __init__(self, tgt_sr, config):
|
||||||
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
||||||
@ -53,7 +66,16 @@ class VC(object):
|
|||||||
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
||||||
self.device = config.device
|
self.device = config.device
|
||||||
|
|
||||||
def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
|
def get_f0(
|
||||||
|
self,
|
||||||
|
input_audio_path,
|
||||||
|
x,
|
||||||
|
p_len,
|
||||||
|
f0_up_key,
|
||||||
|
f0_method,
|
||||||
|
filter_radius,
|
||||||
|
inp_f0=None,
|
||||||
|
):
|
||||||
global input_audio_path2wav
|
global input_audio_path2wav
|
||||||
time_step = self.window / self.sr * 1000
|
time_step = self.window / self.sr * 1000
|
||||||
f0_min = 50
|
f0_min = 50
|
||||||
@ -77,9 +99,9 @@ class VC(object):
|
|||||||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
)
|
)
|
||||||
elif f0_method == "harvest":
|
elif f0_method == "harvest":
|
||||||
input_audio_path2wav[input_audio_path]=x.astype(np.double)
|
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
||||||
f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
|
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
||||||
if(filter_radius>2):
|
if filter_radius > 2:
|
||||||
f0 = signal.medfilt(f0, 3)
|
f0 = signal.medfilt(f0, 3)
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
@ -134,12 +156,12 @@ class VC(object):
|
|||||||
inputs = {
|
inputs = {
|
||||||
"source": feats.to(self.device),
|
"source": feats.to(self.device),
|
||||||
"padding_mask": padding_mask,
|
"padding_mask": padding_mask,
|
||||||
"output_layer": 9if version=="v1"else 12,
|
"output_layer": 9 if version == "v1" else 12,
|
||||||
}
|
}
|
||||||
t0 = ttime()
|
t0 = ttime()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
logits = model.extract_features(**inputs)
|
logits = model.extract_features(**inputs)
|
||||||
feats = model.final_proj(logits[0])if version=="v1"else logits[0]
|
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
||||||
|
|
||||||
if (
|
if (
|
||||||
isinstance(index, type(None)) == False
|
isinstance(index, type(None)) == False
|
||||||
@ -184,10 +206,7 @@ class VC(object):
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
audio1 = (
|
audio1 = (
|
||||||
(net_g.infer(feats, p_len, sid)[0][0, 0])
|
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
|
||||||
.data.cpu()
|
|
||||||
.float()
|
|
||||||
.numpy()
|
|
||||||
)
|
)
|
||||||
del feats, p_len, padding_mask
|
del feats, p_len, padding_mask
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
@ -270,7 +289,15 @@ class VC(object):
|
|||||||
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||||||
pitch, pitchf = None, None
|
pitch, pitchf = None, None
|
||||||
if if_f0 == 1:
|
if if_f0 == 1:
|
||||||
pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
|
pitch, pitchf = self.get_f0(
|
||||||
|
input_audio_path,
|
||||||
|
audio_pad,
|
||||||
|
p_len,
|
||||||
|
f0_up_key,
|
||||||
|
f0_method,
|
||||||
|
filter_radius,
|
||||||
|
inp_f0,
|
||||||
|
)
|
||||||
pitch = pitch[:p_len]
|
pitch = pitch[:p_len]
|
||||||
pitchf = pitchf[:p_len]
|
pitchf = pitchf[:p_len]
|
||||||
if self.device == "mps":
|
if self.device == "mps":
|
||||||
@ -347,16 +374,17 @@ class VC(object):
|
|||||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||||
)
|
)
|
||||||
audio_opt = np.concatenate(audio_opt)
|
audio_opt = np.concatenate(audio_opt)
|
||||||
if(rms_mix_rate!=1):
|
if rms_mix_rate != 1:
|
||||||
audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
|
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
||||||
if(resample_sr>=16000 and tgt_sr!=resample_sr):
|
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
||||||
audio_opt = librosa.resample(
|
audio_opt = librosa.resample(
|
||||||
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
||||||
)
|
)
|
||||||
audio_max=np.abs(audio_opt).max()/0.99
|
audio_max = np.abs(audio_opt).max() / 0.99
|
||||||
max_int16=32768
|
max_int16 = 32768
|
||||||
if(audio_max>1):max_int16/=audio_max
|
if audio_max > 1:
|
||||||
audio_opt=(audio_opt * max_int16).astype(np.int16)
|
max_int16 /= audio_max
|
||||||
|
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
||||||
del pitch, pitchf, sid
|
del pitch, pitchf, sid
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
Loading…
Reference in New Issue
Block a user