Add files via upload

This commit is contained in:
RVC-Boss 2023-05-14 15:07:12 +08:00 committed by GitHub
parent 404ce9338f
commit 77ff5b08b6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -59,9 +59,7 @@ class TextEncoder256(nn.Module):
m, logs = torch.split(stats, self.out_channels, dim=1) m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask return m, logs, x_mask
class TextEncoder768(nn.Module):
class TextEncoder256Sim(nn.Module):
def __init__( def __init__(
self, self,
out_channels, out_channels,
@ -81,14 +79,14 @@ class TextEncoder256Sim(nn.Module):
self.n_layers = n_layers self.n_layers = n_layers
self.kernel_size = kernel_size self.kernel_size = kernel_size
self.p_dropout = p_dropout self.p_dropout = p_dropout
self.emb_phone = nn.Linear(256, hidden_channels) self.emb_phone = nn.Linear(768, hidden_channels)
self.lrelu = nn.LeakyReLU(0.1, inplace=True) self.lrelu = nn.LeakyReLU(0.1, inplace=True)
if f0 == True: if f0 == True:
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
self.encoder = attentions.Encoder( self.encoder = attentions.Encoder(
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
) )
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, phone, pitch, lengths): def forward(self, phone, pitch, lengths):
if pitch == None: if pitch == None:
@ -102,9 +100,10 @@ class TextEncoder256Sim(nn.Module):
x.dtype x.dtype
) )
x = self.encoder(x * x_mask, x_mask) x = self.encoder(x * x_mask, x_mask)
x = self.proj(x) * x_mask stats = self.proj(x) * x_mask
return x, x_mask
m, logs = torch.split(stats, self.out_channels, dim=1)
return m, logs, x_mask
class ResidualCouplingBlock(nn.Module): class ResidualCouplingBlock(nn.Module):
def __init__( def __init__(
@ -636,6 +635,115 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)
class SynthesizerTrnMs768NSFsid(nn.Module):
def __init__(
self,
spec_channels,
segment_size,
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
spk_embed_dim,
gin_channels,
sr,
**kwargs
):
super().__init__()
if type(sr) == type("strr"):
sr = sr2sr[sr]
self.spec_channels = spec_channels
self.inter_channels = inter_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.resblock = resblock
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.upsample_rates = upsample_rates
self.upsample_initial_channel = upsample_initial_channel
self.upsample_kernel_sizes = upsample_kernel_sizes
self.segment_size = segment_size
self.gin_channels = gin_channels
# self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder768(
inter_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
)
self.dec = GeneratorNSF(
inter_channels,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels=gin_channels,
sr=sr,
is_half=kwargs["is_half"],
)
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm()
def forward(
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
): # 这里ds是id[bs,1]
# print(1,pitch.shape)#[bs,t]
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
z_slice, ids_slice = commons.rand_slice_segments(
z, y_lengths, self.segment_size
)
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
# print(-2,pitchf.shape,z_slice.shape)
o = self.dec(z_slice, pitchf, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
class SynthesizerTrnMs256NSFsid_nono(nn.Module): class SynthesizerTrnMs256NSFsid_nono(nn.Module):
@ -738,13 +846,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec((z * x_mask)[:, :, :max_len], g=g) o = self.dec((z * x_mask)[:, :, :max_len], g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
"""
Synthesizer for Training
"""
def __init__( def __init__(
self, self,
spec_channels, spec_channels,
@ -763,9 +865,8 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
upsample_initial_channel, upsample_initial_channel,
upsample_kernel_sizes, upsample_kernel_sizes,
spk_embed_dim, spk_embed_dim,
# hop_length, gin_channels,
gin_channels=0, sr=None,
use_sdp=True,
**kwargs **kwargs
): ):
super().__init__() super().__init__()
@ -787,7 +888,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
self.gin_channels = gin_channels self.gin_channels = gin_channels
# self.hop_length = hop_length# # self.hop_length = hop_length#
self.spk_embed_dim = spk_embed_dim self.spk_embed_dim = spk_embed_dim
self.enc_p = TextEncoder256Sim( self.enc_p = TextEncoder768(
inter_channels, inter_channels,
hidden_channels, hidden_channels,
filter_channels, filter_channels,
@ -795,8 +896,9 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
n_layers, n_layers,
kernel_size, kernel_size,
p_dropout, p_dropout,
f0=False,
) )
self.dec = GeneratorNSF( self.dec = Generator(
inter_channels, inter_channels,
resblock, resblock,
resblock_kernel_sizes, resblock_kernel_sizes,
@ -805,9 +907,16 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
upsample_initial_channel, upsample_initial_channel,
upsample_kernel_sizes, upsample_kernel_sizes,
gin_channels=gin_channels, gin_channels=gin_channels,
is_half=kwargs["is_half"],
) )
self.enc_q = PosteriorEncoder(
spec_channels,
inter_channels,
hidden_channels,
5,
1,
16,
gin_channels=gin_channels,
)
self.flow = ResidualCouplingBlock( self.flow = ResidualCouplingBlock(
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
) )
@ -819,28 +928,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
self.flow.remove_weight_norm() self.flow.remove_weight_norm()
self.enc_q.remove_weight_norm() self.enc_q.remove_weight_norm()
def forward( def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id[bs,1]
self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
): # y是spec不需要了现在
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的 g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
x, x_mask = self.enc_p(phone, pitch, phone_lengths) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
x = self.flow(x, x_mask, g=g, reverse=True) z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
z_p = self.flow(z, y_mask, g=g)
z_slice, ids_slice = commons.rand_slice_segments( z_slice, ids_slice = commons.rand_slice_segments(
x, y_lengths, self.segment_size z, y_lengths, self.segment_size
) )
o = self.dec(z_slice, g=g)
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) def infer(self, phone, phone_lengths, sid, max_len=None):
o = self.dec(z_slice, pitchf, g=g) g = self.emb_g(sid).unsqueeze(-1)
return o, ids_slice m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
def infer( z = self.flow(z_p, x_mask, g=g, reverse=True)
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None o = self.dec((z * x_mask)[:, :, :max_len], g=g)
): # y是spec不需要了现在 return o, x_mask, (z, z_p, m_p, logs_p)
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t广播的
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
x = self.flow(x, x_mask, g=g, reverse=True)
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
return o, o
class MultiPeriodDiscriminator(torch.nn.Module): class MultiPeriodDiscriminator(torch.nn.Module):
@ -872,6 +977,35 @@ class MultiPeriodDiscriminator(torch.nn.Module):
return y_d_rs, y_d_gs, fmap_rs, fmap_gs return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class MultiPeriodDiscriminatorV2(torch.nn.Module):
def __init__(self, use_spectral_norm=False):
super(MultiPeriodDiscriminatorV2, self).__init__()
# periods = [2, 3, 5, 7, 11, 17]
periods = [2,3, 5, 7, 11, 17, 23, 37]
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
discs = discs + [
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
]
self.discriminators = nn.ModuleList(discs)
def forward(self, y, y_hat):
y_d_rs = [] #
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
# for j in range(len(fmap_r)):
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
y_d_rs.append(y_d_r)
y_d_gs.append(y_d_g)
fmap_rs.append(fmap_r)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
class DiscriminatorS(torch.nn.Module): class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False): def __init__(self, use_spectral_norm=False):