mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-04 14:05:04 +08:00
Add files via upload
This commit is contained in:
parent
404ce9338f
commit
77ff5b08b6
@ -59,9 +59,7 @@ class TextEncoder256(nn.Module):
|
|||||||
|
|
||||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
return m, logs, x_mask
|
return m, logs, x_mask
|
||||||
|
class TextEncoder768(nn.Module):
|
||||||
|
|
||||||
class TextEncoder256Sim(nn.Module):
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
out_channels,
|
out_channels,
|
||||||
@ -81,14 +79,14 @@ class TextEncoder256Sim(nn.Module):
|
|||||||
self.n_layers = n_layers
|
self.n_layers = n_layers
|
||||||
self.kernel_size = kernel_size
|
self.kernel_size = kernel_size
|
||||||
self.p_dropout = p_dropout
|
self.p_dropout = p_dropout
|
||||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
self.emb_phone = nn.Linear(768, hidden_channels)
|
||||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||||
if f0 == True:
|
if f0 == True:
|
||||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||||
self.encoder = attentions.Encoder(
|
self.encoder = attentions.Encoder(
|
||||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||||
)
|
)
|
||||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
def forward(self, phone, pitch, lengths):
|
def forward(self, phone, pitch, lengths):
|
||||||
if pitch == None:
|
if pitch == None:
|
||||||
@ -102,9 +100,10 @@ class TextEncoder256Sim(nn.Module):
|
|||||||
x.dtype
|
x.dtype
|
||||||
)
|
)
|
||||||
x = self.encoder(x * x_mask, x_mask)
|
x = self.encoder(x * x_mask, x_mask)
|
||||||
x = self.proj(x) * x_mask
|
stats = self.proj(x) * x_mask
|
||||||
return x, x_mask
|
|
||||||
|
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
return m, logs, x_mask
|
||||||
|
|
||||||
class ResidualCouplingBlock(nn.Module):
|
class ResidualCouplingBlock(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -636,6 +635,115 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
class SynthesizerTrnMs768NSFsid(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
spec_channels,
|
||||||
|
segment_size,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
spk_embed_dim,
|
||||||
|
gin_channels,
|
||||||
|
sr,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
if type(sr) == type("strr"):
|
||||||
|
sr = sr2sr[sr]
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
# self.hop_length = hop_length#
|
||||||
|
self.spk_embed_dim = spk_embed_dim
|
||||||
|
self.enc_p = TextEncoder768(
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
)
|
||||||
|
self.dec = GeneratorNSF(
|
||||||
|
inter_channels,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
sr=sr,
|
||||||
|
is_half=kwargs["is_half"],
|
||||||
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
|
self.flow = ResidualCouplingBlock(
|
||||||
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
|
)
|
||||||
|
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||||
|
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
self.dec.remove_weight_norm()
|
||||||
|
self.flow.remove_weight_norm()
|
||||||
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||||
|
): # 这里ds是id,[bs,1]
|
||||||
|
# print(1,pitch.shape)#[bs,t]
|
||||||
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
z_slice, ids_slice = commons.rand_slice_segments(
|
||||||
|
z, y_lengths, self.segment_size
|
||||||
|
)
|
||||||
|
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||||
|
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||||
|
# print(-2,pitchf.shape,z_slice.shape)
|
||||||
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||||
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||||
@ -738,13 +846,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
||||||
|
|
||||||
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|
||||||
"""
|
|
||||||
Synthesizer for Training
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
spec_channels,
|
spec_channels,
|
||||||
@ -763,9 +865,8 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|||||||
upsample_initial_channel,
|
upsample_initial_channel,
|
||||||
upsample_kernel_sizes,
|
upsample_kernel_sizes,
|
||||||
spk_embed_dim,
|
spk_embed_dim,
|
||||||
# hop_length,
|
gin_channels,
|
||||||
gin_channels=0,
|
sr=None,
|
||||||
use_sdp=True,
|
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -787,7 +888,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|||||||
self.gin_channels = gin_channels
|
self.gin_channels = gin_channels
|
||||||
# self.hop_length = hop_length#
|
# self.hop_length = hop_length#
|
||||||
self.spk_embed_dim = spk_embed_dim
|
self.spk_embed_dim = spk_embed_dim
|
||||||
self.enc_p = TextEncoder256Sim(
|
self.enc_p = TextEncoder768(
|
||||||
inter_channels,
|
inter_channels,
|
||||||
hidden_channels,
|
hidden_channels,
|
||||||
filter_channels,
|
filter_channels,
|
||||||
@ -795,8 +896,9 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|||||||
n_layers,
|
n_layers,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
p_dropout,
|
p_dropout,
|
||||||
|
f0=False,
|
||||||
)
|
)
|
||||||
self.dec = GeneratorNSF(
|
self.dec = Generator(
|
||||||
inter_channels,
|
inter_channels,
|
||||||
resblock,
|
resblock,
|
||||||
resblock_kernel_sizes,
|
resblock_kernel_sizes,
|
||||||
@ -805,9 +907,16 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|||||||
upsample_initial_channel,
|
upsample_initial_channel,
|
||||||
upsample_kernel_sizes,
|
upsample_kernel_sizes,
|
||||||
gin_channels=gin_channels,
|
gin_channels=gin_channels,
|
||||||
is_half=kwargs["is_half"],
|
|
||||||
)
|
)
|
||||||
|
self.enc_q = PosteriorEncoder(
|
||||||
|
spec_channels,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
5,
|
||||||
|
1,
|
||||||
|
16,
|
||||||
|
gin_channels=gin_channels,
|
||||||
|
)
|
||||||
self.flow = ResidualCouplingBlock(
|
self.flow = ResidualCouplingBlock(
|
||||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||||
)
|
)
|
||||||
@ -819,28 +928,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
|||||||
self.flow.remove_weight_norm()
|
self.flow.remove_weight_norm()
|
||||||
self.enc_q.remove_weight_norm()
|
self.enc_q.remove_weight_norm()
|
||||||
|
|
||||||
def forward(
|
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||||
self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
|
|
||||||
): # y是spec不需要了现在
|
|
||||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
z_slice, ids_slice = commons.rand_slice_segments(
|
z_slice, ids_slice = commons.rand_slice_segments(
|
||||||
x, y_lengths, self.segment_size
|
z, y_lengths, self.segment_size
|
||||||
)
|
)
|
||||||
|
o = self.dec(z_slice, g=g)
|
||||||
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||||
o = self.dec(z_slice, pitchf, g=g)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
return o, ids_slice
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
def infer(
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||||
): # y是spec不需要了现在
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
|
||||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
|
||||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
|
||||||
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
|
||||||
return o, o
|
|
||||||
|
|
||||||
|
|
||||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||||
@ -872,6 +977,35 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
|||||||
|
|
||||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(MultiPeriodDiscriminatorV2, self).__init__()
|
||||||
|
# periods = [2, 3, 5, 7, 11, 17]
|
||||||
|
periods = [2,3, 5, 7, 11, 17, 23, 37]
|
||||||
|
|
||||||
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||||
|
discs = discs + [
|
||||||
|
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
||||||
|
]
|
||||||
|
self.discriminators = nn.ModuleList(discs)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = [] #
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
# for j in range(len(fmap_r)):
|
||||||
|
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
|
||||||
class DiscriminatorS(torch.nn.Module):
|
class DiscriminatorS(torch.nn.Module):
|
||||||
def __init__(self, use_spectral_norm=False):
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
Loading…
Reference in New Issue
Block a user