mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 02:55:05 +08:00
Fix return_complex warning on training (#1627)
* Fix return_complex warning on training * remove unused prints
This commit is contained in:
parent
0f8a5facd9
commit
78f03e7dc0
@ -38,7 +38,6 @@ def spectral_de_normalize_torch(magnitudes):
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
||||
|
||||
@ -52,12 +51,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
Returns:
|
||||
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
||||
"""
|
||||
# Validation
|
||||
if torch.min(y) < -1.07:
|
||||
logger.debug("min value is %s", str(torch.min(y)))
|
||||
if torch.max(y) > 1.07:
|
||||
logger.debug("max value is %s", str(torch.max(y)))
|
||||
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
@ -66,7 +60,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
|
||||
# Padding
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
@ -74,7 +68,7 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
|
||||
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
@ -86,14 +80,13 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
return_complex=True,
|
||||
)
|
||||
|
||||
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
# MelBasis - Cache if needed
|
||||
global mel_basis
|
||||
|
Loading…
Reference in New Issue
Block a user