mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-05-06 20:01:37 +08:00
add formant shift for realtime-gui
This commit is contained in:
parent
f5bb555b84
commit
8b908ccf6f
@ -1 +1 @@
|
|||||||
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}
|
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "formant": 0.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}
|
20
gui_v1.py
20
gui_v1.py
@ -114,6 +114,7 @@ if __name__ == "__main__":
|
|||||||
self.pth_path: str = ""
|
self.pth_path: str = ""
|
||||||
self.index_path: str = ""
|
self.index_path: str = ""
|
||||||
self.pitch: int = 0
|
self.pitch: int = 0
|
||||||
|
self.formant: float = 0.0
|
||||||
self.sr_type: str = "sr_model"
|
self.sr_type: str = "sr_model"
|
||||||
self.block_time: float = 0.25 # s
|
self.block_time: float = 0.25 # s
|
||||||
self.threhold: int = -60
|
self.threhold: int = -60
|
||||||
@ -212,6 +213,7 @@ if __name__ == "__main__":
|
|||||||
"sr_type": "sr_model",
|
"sr_type": "sr_model",
|
||||||
"threhold": -60,
|
"threhold": -60,
|
||||||
"pitch": 0,
|
"pitch": 0,
|
||||||
|
"formant": 0.0,
|
||||||
"index_rate": 0,
|
"index_rate": 0,
|
||||||
"rms_mix_rate": 0,
|
"rms_mix_rate": 0,
|
||||||
"block_time": 0.25,
|
"block_time": 0.25,
|
||||||
@ -353,6 +355,17 @@ if __name__ == "__main__":
|
|||||||
default_value=data.get("pitch", 0),
|
default_value=data.get("pitch", 0),
|
||||||
enable_events=True,
|
enable_events=True,
|
||||||
),
|
),
|
||||||
|
],
|
||||||
|
[
|
||||||
|
sg.Text(i18n("共振偏移")),
|
||||||
|
sg.Slider(
|
||||||
|
range=(-5, 5),
|
||||||
|
key="formant",
|
||||||
|
resolution=0.01,
|
||||||
|
orientation="h",
|
||||||
|
default_value=data.get("formant", 0.0),
|
||||||
|
enable_events=True,
|
||||||
|
),
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
sg.Text(i18n("Index Rate")),
|
sg.Text(i18n("Index Rate")),
|
||||||
@ -579,6 +592,7 @@ if __name__ == "__main__":
|
|||||||
],
|
],
|
||||||
"threhold": values["threhold"],
|
"threhold": values["threhold"],
|
||||||
"pitch": values["pitch"],
|
"pitch": values["pitch"],
|
||||||
|
"formant": values["formant"],
|
||||||
"rms_mix_rate": values["rms_mix_rate"],
|
"rms_mix_rate": values["rms_mix_rate"],
|
||||||
"index_rate": values["index_rate"],
|
"index_rate": values["index_rate"],
|
||||||
# "device_latency": values["device_latency"],
|
# "device_latency": values["device_latency"],
|
||||||
@ -621,6 +635,10 @@ if __name__ == "__main__":
|
|||||||
self.gui_config.pitch = values["pitch"]
|
self.gui_config.pitch = values["pitch"]
|
||||||
if hasattr(self, "rvc"):
|
if hasattr(self, "rvc"):
|
||||||
self.rvc.change_key(values["pitch"])
|
self.rvc.change_key(values["pitch"])
|
||||||
|
elif event == "formant":
|
||||||
|
self.gui_config.formant = values["formant"]
|
||||||
|
if hasattr(self, "rvc"):
|
||||||
|
self.rvc.change_formant(values["formant"])
|
||||||
elif event == "index_rate":
|
elif event == "index_rate":
|
||||||
self.gui_config.index_rate = values["index_rate"]
|
self.gui_config.index_rate = values["index_rate"]
|
||||||
if hasattr(self, "rvc"):
|
if hasattr(self, "rvc"):
|
||||||
@ -679,6 +697,7 @@ if __name__ == "__main__":
|
|||||||
]
|
]
|
||||||
self.gui_config.threhold = values["threhold"]
|
self.gui_config.threhold = values["threhold"]
|
||||||
self.gui_config.pitch = values["pitch"]
|
self.gui_config.pitch = values["pitch"]
|
||||||
|
self.gui_config.formant = values["formant"]
|
||||||
self.gui_config.block_time = values["block_time"]
|
self.gui_config.block_time = values["block_time"]
|
||||||
self.gui_config.crossfade_time = values["crossfade_length"]
|
self.gui_config.crossfade_time = values["crossfade_length"]
|
||||||
self.gui_config.extra_time = values["extra_time"]
|
self.gui_config.extra_time = values["extra_time"]
|
||||||
@ -703,6 +722,7 @@ if __name__ == "__main__":
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
self.rvc = rtrvc.RVC(
|
self.rvc = rtrvc.RVC(
|
||||||
self.gui_config.pitch,
|
self.gui_config.pitch,
|
||||||
|
self.gui_config.formant,
|
||||||
self.gui_config.pth_path,
|
self.gui_config.pth_path,
|
||||||
self.gui_config.index_path,
|
self.gui_config.index_path,
|
||||||
self.gui_config.index_rate,
|
self.gui_config.index_rate,
|
||||||
|
@ -10,7 +10,6 @@ from torch import nn
|
|||||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||||
|
|
||||||
from infer.lib.infer_pack import attentions, commons, modules
|
from infer.lib.infer_pack import attentions, commons, modules
|
||||||
from infer.lib.infer_pack.commons import get_padding, init_weights
|
from infer.lib.infer_pack.commons import get_padding, init_weights
|
||||||
|
|
||||||
@ -250,7 +249,12 @@ class Generator(torch.nn.Module):
|
|||||||
if gin_channels != 0:
|
if gin_channels != 0:
|
||||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
|
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None, n_res: Optional[torch.Tensor] = None):
|
||||||
|
if n_res is not None:
|
||||||
|
assert isinstance(n_res, torch.Tensor)
|
||||||
|
n = int(n_res.item())
|
||||||
|
if n != x.shape[-1]:
|
||||||
|
x = F.interpolate(x, size=n, mode='linear')
|
||||||
x = self.conv_pre(x)
|
x = self.conv_pre(x)
|
||||||
if g is not None:
|
if g is not None:
|
||||||
x = x + self.cond(g)
|
x = x + self.cond(g)
|
||||||
@ -529,9 +533,16 @@ class GeneratorNSF(torch.nn.Module):
|
|||||||
|
|
||||||
self.lrelu_slope = modules.LRELU_SLOPE
|
self.lrelu_slope = modules.LRELU_SLOPE
|
||||||
|
|
||||||
def forward(self, x, f0, g: Optional[torch.Tensor] = None):
|
def forward(self, x, f0, g: Optional[torch.Tensor] = None, n_res: Optional[torch.Tensor] = None):
|
||||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||||
har_source = har_source.transpose(1, 2)
|
har_source = har_source.transpose(1, 2)
|
||||||
|
if n_res is not None:
|
||||||
|
assert isinstance(n_res, torch.Tensor)
|
||||||
|
n = int(n_res.item())
|
||||||
|
if n * self.upp != har_source.shape[-1]:
|
||||||
|
har_source = F.interpolate(har_source, size=n*self.upp, mode='linear')
|
||||||
|
if n != x.shape[-1]:
|
||||||
|
x = F.interpolate(x, size=n, mode='linear')
|
||||||
x = self.conv_pre(x)
|
x = self.conv_pre(x)
|
||||||
if g is not None:
|
if g is not None:
|
||||||
x = x + self.cond(g)
|
x = x + self.cond(g)
|
||||||
@ -558,6 +569,7 @@ class GeneratorNSF(torch.nn.Module):
|
|||||||
x = F.leaky_relu(x)
|
x = F.leaky_relu(x)
|
||||||
x = self.conv_post(x)
|
x = self.conv_post(x)
|
||||||
x = torch.tanh(x)
|
x = torch.tanh(x)
|
||||||
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def remove_weight_norm(self):
|
def remove_weight_norm(self):
|
||||||
@ -748,6 +760,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
sid: torch.Tensor,
|
sid: torch.Tensor,
|
||||||
skip_head: Optional[torch.Tensor] = None,
|
skip_head: Optional[torch.Tensor] = None,
|
||||||
return_length: Optional[torch.Tensor] = None,
|
return_length: Optional[torch.Tensor] = None,
|
||||||
|
return_length2: Optional[torch.Tensor] = None,
|
||||||
):
|
):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
if skip_head is not None and return_length is not None:
|
if skip_head is not None and return_length is not None:
|
||||||
@ -767,7 +780,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, nsff0, g=g)
|
o = self.dec(z * x_mask, nsff0, g=g, n_res=return_length2)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
@ -963,6 +976,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
sid: torch.Tensor,
|
sid: torch.Tensor,
|
||||||
skip_head: Optional[torch.Tensor] = None,
|
skip_head: Optional[torch.Tensor] = None,
|
||||||
return_length: Optional[torch.Tensor] = None,
|
return_length: Optional[torch.Tensor] = None,
|
||||||
|
return_length2: Optional[torch.Tensor] = None,
|
||||||
):
|
):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
if skip_head is not None and return_length is not None:
|
if skip_head is not None and return_length is not None:
|
||||||
@ -981,7 +995,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, g=g)
|
o = self.dec(z * x_mask, g=g, n_res=return_length2)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
@ -15,6 +15,7 @@ import torch
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchcrepe
|
import torchcrepe
|
||||||
|
from torchaudio.transforms import Resample
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
@ -40,6 +41,7 @@ class RVC:
|
|||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
key,
|
key,
|
||||||
|
formant,
|
||||||
pth_path,
|
pth_path,
|
||||||
index_path,
|
index_path,
|
||||||
index_rate,
|
index_rate,
|
||||||
@ -68,6 +70,7 @@ class RVC:
|
|||||||
# device="cpu"########强制cpu测试
|
# device="cpu"########强制cpu测试
|
||||||
self.device = config.device
|
self.device = config.device
|
||||||
self.f0_up_key = key
|
self.f0_up_key = key
|
||||||
|
self.formant_shift = formant
|
||||||
self.f0_min = 50
|
self.f0_min = 50
|
||||||
self.f0_max = 1100
|
self.f0_max = 1100
|
||||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||||
@ -90,6 +93,8 @@ class RVC:
|
|||||||
1024, device=self.device, dtype=torch.float32
|
1024, device=self.device, dtype=torch.float32
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.resample_kernel = {}
|
||||||
|
|
||||||
if last_rvc is None:
|
if last_rvc is None:
|
||||||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||||||
["assets/hubert/hubert_base.pt"],
|
["assets/hubert/hubert_base.pt"],
|
||||||
@ -187,6 +192,9 @@ class RVC:
|
|||||||
def change_key(self, new_key):
|
def change_key(self, new_key):
|
||||||
self.f0_up_key = new_key
|
self.f0_up_key = new_key
|
||||||
|
|
||||||
|
def change_formant(self, new_formant):
|
||||||
|
self.formant_shift = new_formant
|
||||||
|
|
||||||
def change_index_rate(self, new_index_rate):
|
def change_index_rate(self, new_index_rate):
|
||||||
if new_index_rate != 0 and self.index_rate == 0:
|
if new_index_rate != 0 and self.index_rate == 0:
|
||||||
self.index = faiss.read_index(self.index_path)
|
self.index = faiss.read_index(self.index_path)
|
||||||
@ -198,7 +206,7 @@ class RVC:
|
|||||||
if not torch.is_tensor(f0):
|
if not torch.is_tensor(f0):
|
||||||
f0 = torch.from_numpy(f0)
|
f0 = torch.from_numpy(f0)
|
||||||
f0 = f0.float().to(self.device).squeeze()
|
f0 = f0.float().to(self.device).squeeze()
|
||||||
f0_mel = 1127 * torch.log(1 + f0 / 700)
|
f0_mel = 1127 * torch.log(1 + f0 * pow(2, -self.formant_shift / 12) / 700)
|
||||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
||||||
self.f0_mel_max - self.f0_mel_min
|
self.f0_mel_max - self.f0_mel_min
|
||||||
) + 1
|
) + 1
|
||||||
@ -410,6 +418,8 @@ class RVC:
|
|||||||
p_len = torch.LongTensor([p_len]).to(self.device)
|
p_len = torch.LongTensor([p_len]).to(self.device)
|
||||||
sid = torch.LongTensor([0]).to(self.device)
|
sid = torch.LongTensor([0]).to(self.device)
|
||||||
skip_head = torch.LongTensor([skip_head])
|
skip_head = torch.LongTensor([skip_head])
|
||||||
|
factor = pow(2, self.formant_shift / 12)
|
||||||
|
return_length2 = torch.LongTensor([int(np.ceil(return_length * factor))])
|
||||||
return_length = torch.LongTensor([return_length])
|
return_length = torch.LongTensor([return_length])
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if self.if_f0 == 1:
|
if self.if_f0 == 1:
|
||||||
@ -421,11 +431,22 @@ class RVC:
|
|||||||
sid,
|
sid,
|
||||||
skip_head,
|
skip_head,
|
||||||
return_length,
|
return_length,
|
||||||
|
return_length2,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
infered_audio, _, _ = self.net_g.infer(
|
infered_audio, _, _ = self.net_g.infer(
|
||||||
feats, p_len, sid, skip_head, return_length
|
feats, p_len, sid, skip_head, return_length, return_length2
|
||||||
)
|
)
|
||||||
|
infered_audio = infered_audio.squeeze(1).float()
|
||||||
|
upp_res = int(np.floor(factor * self.tgt_sr // 100))
|
||||||
|
if upp_res != self.tgt_sr // 100:
|
||||||
|
if upp_res not in self.resample_kernel:
|
||||||
|
self.resample_kernel[upp_res] = Resample(
|
||||||
|
orig_freq=upp_res,
|
||||||
|
new_freq=self.tgt_sr // 100,
|
||||||
|
dtype=torch.float32,
|
||||||
|
).to(self.device)
|
||||||
|
infered_audio = self.resample_kernel[upp_res](infered_audio[: ,: return_length * upp_res])
|
||||||
t5 = ttime()
|
t5 = ttime()
|
||||||
printt(
|
printt(
|
||||||
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
|
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
|
||||||
@ -434,4 +455,4 @@ class RVC:
|
|||||||
t4 - t3,
|
t4 - t3,
|
||||||
t5 - t4,
|
t5 - t4,
|
||||||
)
|
)
|
||||||
return infered_audio.squeeze().float()
|
return infered_audio.squeeze()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user