mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-04 05:55:04 +08:00
Format code (#727)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
6c13f1fe52
commit
9739f3085d
214
gui_v1.py
214
gui_v1.py
@ -1,29 +1,34 @@
|
|||||||
import os,sys
|
import os, sys
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
|
|
||||||
|
|
||||||
class Harvest(multiprocessing.Process):
|
class Harvest(multiprocessing.Process):
|
||||||
def __init__(self,inp_q,opt_q):
|
def __init__(self, inp_q, opt_q):
|
||||||
multiprocessing.Process.__init__(self)
|
multiprocessing.Process.__init__(self)
|
||||||
self.inp_q=inp_q
|
self.inp_q = inp_q
|
||||||
self.opt_q=opt_q
|
self.opt_q = opt_q
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
import numpy as np, pyworld
|
import numpy as np, pyworld
|
||||||
while(1):
|
|
||||||
idx, x, res_f0,n_cpu,ts=self.inp_q.get()
|
while 1:
|
||||||
f0,t=pyworld.harvest(
|
idx, x, res_f0, n_cpu, ts = self.inp_q.get()
|
||||||
|
f0, t = pyworld.harvest(
|
||||||
x.astype(np.double),
|
x.astype(np.double),
|
||||||
fs=16000,
|
fs=16000,
|
||||||
f0_ceil=1100,
|
f0_ceil=1100,
|
||||||
f0_floor=50,
|
f0_floor=50,
|
||||||
frame_period=10,
|
frame_period=10,
|
||||||
)
|
)
|
||||||
res_f0[idx]=f0
|
res_f0[idx] = f0
|
||||||
if(len(res_f0.keys())>=n_cpu):
|
if len(res_f0.keys()) >= n_cpu:
|
||||||
self.opt_q.put(ts)
|
self.opt_q.put(ts)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
if __name__ == "__main__":
|
||||||
from multiprocessing import Queue
|
from multiprocessing import Queue
|
||||||
from queue import Empty
|
from queue import Empty
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -43,11 +48,12 @@ if __name__ == '__main__':
|
|||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
current_dir = os.getcwd()
|
current_dir = os.getcwd()
|
||||||
inp_q = Queue()
|
inp_q = Queue()
|
||||||
opt_q=Queue()
|
opt_q = Queue()
|
||||||
n_cpu=min(cpu_count(),8)
|
n_cpu = min(cpu_count(), 8)
|
||||||
for _ in range(n_cpu):
|
for _ in range(n_cpu):
|
||||||
Harvest(inp_q,opt_q).start()
|
Harvest(inp_q, opt_q).start()
|
||||||
from rvc_for_realtime import RVC
|
from rvc_for_realtime import RVC
|
||||||
|
|
||||||
class GUIConfig:
|
class GUIConfig:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.pth_path: str = ""
|
self.pth_path: str = ""
|
||||||
@ -62,9 +68,8 @@ if __name__ == '__main__':
|
|||||||
self.I_noise_reduce = False
|
self.I_noise_reduce = False
|
||||||
self.O_noise_reduce = False
|
self.O_noise_reduce = False
|
||||||
self.index_rate = 0.3
|
self.index_rate = 0.3
|
||||||
self.n_cpu=min(n_cpu,8)
|
self.n_cpu = min(n_cpu, 8)
|
||||||
self.f0method="harvest"
|
self.f0method = "harvest"
|
||||||
|
|
||||||
|
|
||||||
class GUI:
|
class GUI:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
@ -78,10 +83,10 @@ if __name__ == '__main__':
|
|||||||
try:
|
try:
|
||||||
with open("values1.json", "r") as j:
|
with open("values1.json", "r") as j:
|
||||||
data = json.load(j)
|
data = json.load(j)
|
||||||
data["pm"]=data["f0method"]=="pm"
|
data["pm"] = data["f0method"] == "pm"
|
||||||
data["harvest"]=data["f0method"]=="harvest"
|
data["harvest"] = data["f0method"] == "harvest"
|
||||||
data["crepe"]=data["f0method"]=="crepe"
|
data["crepe"] = data["f0method"] == "crepe"
|
||||||
data["rmvpe"]=data["f0method"]=="rmvpe"
|
data["rmvpe"] = data["f0method"] == "rmvpe"
|
||||||
except:
|
except:
|
||||||
with open("values1.json", "w") as j:
|
with open("values1.json", "w") as j:
|
||||||
data = {
|
data = {
|
||||||
@ -191,10 +196,30 @@ if __name__ == '__main__':
|
|||||||
],
|
],
|
||||||
[
|
[
|
||||||
sg.Text(i18n("音高算法")),
|
sg.Text(i18n("音高算法")),
|
||||||
sg.Radio("pm","f0method",key="pm",default=data.get("pm","")==True),
|
sg.Radio(
|
||||||
sg.Radio("harvest","f0method",key="harvest",default=data.get("harvest","")==True),
|
"pm",
|
||||||
sg.Radio("crepe","f0method",key="crepe",default=data.get("crepe","")==True),
|
"f0method",
|
||||||
sg.Radio("rmvpe","f0method",key="rmvpe",default=data.get("rmvpe","")==True),
|
key="pm",
|
||||||
|
default=data.get("pm", "") == True,
|
||||||
|
),
|
||||||
|
sg.Radio(
|
||||||
|
"harvest",
|
||||||
|
"f0method",
|
||||||
|
key="harvest",
|
||||||
|
default=data.get("harvest", "") == True,
|
||||||
|
),
|
||||||
|
sg.Radio(
|
||||||
|
"crepe",
|
||||||
|
"f0method",
|
||||||
|
key="crepe",
|
||||||
|
default=data.get("crepe", "") == True,
|
||||||
|
),
|
||||||
|
sg.Radio(
|
||||||
|
"rmvpe",
|
||||||
|
"f0method",
|
||||||
|
key="rmvpe",
|
||||||
|
default=data.get("rmvpe", "") == True,
|
||||||
|
),
|
||||||
],
|
],
|
||||||
],
|
],
|
||||||
title=i18n("常规设置"),
|
title=i18n("常规设置"),
|
||||||
@ -218,7 +243,9 @@ if __name__ == '__main__':
|
|||||||
key="n_cpu",
|
key="n_cpu",
|
||||||
resolution=1,
|
resolution=1,
|
||||||
orientation="h",
|
orientation="h",
|
||||||
default_value=data.get("n_cpu", min(self.config.n_cpu,n_cpu)),
|
default_value=data.get(
|
||||||
|
"n_cpu", min(self.config.n_cpu, n_cpu)
|
||||||
|
),
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
@ -281,7 +308,14 @@ if __name__ == '__main__':
|
|||||||
"crossfade_length": values["crossfade_length"],
|
"crossfade_length": values["crossfade_length"],
|
||||||
"extra_time": values["extra_time"],
|
"extra_time": values["extra_time"],
|
||||||
"n_cpu": values["n_cpu"],
|
"n_cpu": values["n_cpu"],
|
||||||
"f0method": ["pm","harvest","crepe","rmvpe"][[values["pm"],values["harvest"],values["crepe"],values["rmvpe"]].index(True)],
|
"f0method": ["pm", "harvest", "crepe", "rmvpe"][
|
||||||
|
[
|
||||||
|
values["pm"],
|
||||||
|
values["harvest"],
|
||||||
|
values["crepe"],
|
||||||
|
values["rmvpe"],
|
||||||
|
].index(True)
|
||||||
|
],
|
||||||
}
|
}
|
||||||
with open("values1.json", "w") as j:
|
with open("values1.json", "w") as j:
|
||||||
json.dump(settings, j)
|
json.dump(settings, j)
|
||||||
@ -314,7 +348,14 @@ if __name__ == '__main__':
|
|||||||
self.config.O_noise_reduce = values["O_noise_reduce"]
|
self.config.O_noise_reduce = values["O_noise_reduce"]
|
||||||
self.config.index_rate = values["index_rate"]
|
self.config.index_rate = values["index_rate"]
|
||||||
self.config.n_cpu = values["n_cpu"]
|
self.config.n_cpu = values["n_cpu"]
|
||||||
self.config.f0method = ["pm","harvest","crepe","rmvpe"][[values["pm"],values["harvest"],values["crepe"],values["rmvpe"]].index(True)]
|
self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][
|
||||||
|
[
|
||||||
|
values["pm"],
|
||||||
|
values["harvest"],
|
||||||
|
values["crepe"],
|
||||||
|
values["rmvpe"],
|
||||||
|
].index(True)
|
||||||
|
]
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def start_vc(self):
|
def start_vc(self):
|
||||||
@ -325,20 +366,64 @@ if __name__ == '__main__':
|
|||||||
self.config.pth_path,
|
self.config.pth_path,
|
||||||
self.config.index_path,
|
self.config.index_path,
|
||||||
self.config.index_rate,
|
self.config.index_rate,
|
||||||
self.config.n_cpu,inp_q,opt_q,device
|
self.config.n_cpu,
|
||||||
|
inp_q,
|
||||||
|
opt_q,
|
||||||
|
device,
|
||||||
|
)
|
||||||
|
self.config.samplerate = self.rvc.tgt_sr
|
||||||
|
self.config.crossfade_time = min(
|
||||||
|
self.config.crossfade_time, self.config.block_time
|
||||||
)
|
)
|
||||||
self.config.samplerate=self.rvc.tgt_sr
|
|
||||||
self.config.crossfade_time=min(self.config.crossfade_time,self.config.block_time)
|
|
||||||
self.block_frame = int(self.config.block_time * self.config.samplerate)
|
self.block_frame = int(self.config.block_time * self.config.samplerate)
|
||||||
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
|
self.crossfade_frame = int(
|
||||||
|
self.config.crossfade_time * self.config.samplerate
|
||||||
|
)
|
||||||
self.sola_search_frame = int(0.01 * self.config.samplerate)
|
self.sola_search_frame = int(0.01 * self.config.samplerate)
|
||||||
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
|
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
|
||||||
self.zc=self.rvc.tgt_sr//100
|
self.zc = self.rvc.tgt_sr // 100
|
||||||
self.input_wav: np.ndarray = np.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc),dtype="float32",)
|
self.input_wav: np.ndarray = np.zeros(
|
||||||
self.output_wav_cache: torch.Tensor = torch.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc), device=device,dtype=torch.float32)
|
int(
|
||||||
self.pitch: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="int32",)
|
np.ceil(
|
||||||
self.pitchf: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="float64",)
|
(
|
||||||
self.output_wav: torch.Tensor = torch.zeros(self.block_frame, device=device, dtype=torch.float32)
|
self.extra_frame
|
||||||
|
+ self.crossfade_frame
|
||||||
|
+ self.sola_search_frame
|
||||||
|
+ self.block_frame
|
||||||
|
)
|
||||||
|
/ self.zc
|
||||||
|
)
|
||||||
|
* self.zc
|
||||||
|
),
|
||||||
|
dtype="float32",
|
||||||
|
)
|
||||||
|
self.output_wav_cache: torch.Tensor = torch.zeros(
|
||||||
|
int(
|
||||||
|
np.ceil(
|
||||||
|
(
|
||||||
|
self.extra_frame
|
||||||
|
+ self.crossfade_frame
|
||||||
|
+ self.sola_search_frame
|
||||||
|
+ self.block_frame
|
||||||
|
)
|
||||||
|
/ self.zc
|
||||||
|
)
|
||||||
|
* self.zc
|
||||||
|
),
|
||||||
|
device=device,
|
||||||
|
dtype=torch.float32,
|
||||||
|
)
|
||||||
|
self.pitch: np.ndarray = np.zeros(
|
||||||
|
self.input_wav.shape[0] // self.zc,
|
||||||
|
dtype="int32",
|
||||||
|
)
|
||||||
|
self.pitchf: np.ndarray = np.zeros(
|
||||||
|
self.input_wav.shape[0] // self.zc,
|
||||||
|
dtype="float64",
|
||||||
|
)
|
||||||
|
self.output_wav: torch.Tensor = torch.zeros(
|
||||||
|
self.block_frame, device=device, dtype=torch.float32
|
||||||
|
)
|
||||||
self.sola_buffer: torch.Tensor = torch.zeros(
|
self.sola_buffer: torch.Tensor = torch.zeros(
|
||||||
self.crossfade_frame, device=device, dtype=torch.float32
|
self.crossfade_frame, device=device, dtype=torch.float32
|
||||||
)
|
)
|
||||||
@ -384,22 +469,46 @@ if __name__ == '__main__':
|
|||||||
rms = librosa.feature.rms(
|
rms = librosa.feature.rms(
|
||||||
y=indata, frame_length=frame_length, hop_length=hop_length
|
y=indata, frame_length=frame_length, hop_length=hop_length
|
||||||
)
|
)
|
||||||
if(self.config.threhold>-60):
|
if self.config.threhold > -60:
|
||||||
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
db_threhold = (
|
||||||
|
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
||||||
|
)
|
||||||
for i in range(db_threhold.shape[0]):
|
for i in range(db_threhold.shape[0]):
|
||||||
if db_threhold[i]:
|
if db_threhold[i]:
|
||||||
indata[i * hop_length : (i + 1) * hop_length] = 0
|
indata[i * hop_length : (i + 1) * hop_length] = 0
|
||||||
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
|
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
|
||||||
# infer
|
# infer
|
||||||
inp=torch.from_numpy(self.input_wav).to(device)
|
inp = torch.from_numpy(self.input_wav).to(device)
|
||||||
##0
|
##0
|
||||||
res1=self.resampler(inp)
|
res1 = self.resampler(inp)
|
||||||
###55%
|
###55%
|
||||||
rate1=self.block_frame/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
|
rate1 = self.block_frame / (
|
||||||
rate2=(self.crossfade_frame + self.sola_search_frame + self.block_frame)/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
|
self.extra_frame
|
||||||
res2=self.rvc.infer(res1,res1[-self.block_frame:].cpu().numpy(),rate1,rate2,self.pitch,self.pitchf,self.config.f0method)
|
+ self.crossfade_frame
|
||||||
self.output_wav_cache[-res2.shape[0]:]=res2
|
+ self.sola_search_frame
|
||||||
infer_wav = self.output_wav_cache[-self.crossfade_frame - self.sola_search_frame - self.block_frame :]
|
+ self.block_frame
|
||||||
|
)
|
||||||
|
rate2 = (
|
||||||
|
self.crossfade_frame + self.sola_search_frame + self.block_frame
|
||||||
|
) / (
|
||||||
|
self.extra_frame
|
||||||
|
+ self.crossfade_frame
|
||||||
|
+ self.sola_search_frame
|
||||||
|
+ self.block_frame
|
||||||
|
)
|
||||||
|
res2 = self.rvc.infer(
|
||||||
|
res1,
|
||||||
|
res1[-self.block_frame :].cpu().numpy(),
|
||||||
|
rate1,
|
||||||
|
rate2,
|
||||||
|
self.pitch,
|
||||||
|
self.pitchf,
|
||||||
|
self.config.f0method,
|
||||||
|
)
|
||||||
|
self.output_wav_cache[-res2.shape[0] :] = res2
|
||||||
|
infer_wav = self.output_wav_cache[
|
||||||
|
-self.crossfade_frame - self.sola_search_frame - self.block_frame :
|
||||||
|
]
|
||||||
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
||||||
cor_nom = F.conv1d(
|
cor_nom = F.conv1d(
|
||||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
|
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
|
||||||
@ -407,7 +516,9 @@ if __name__ == '__main__':
|
|||||||
)
|
)
|
||||||
cor_den = torch.sqrt(
|
cor_den = torch.sqrt(
|
||||||
F.conv1d(
|
F.conv1d(
|
||||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
|
infer_wav[
|
||||||
|
None, None, : self.crossfade_frame + self.sola_search_frame
|
||||||
|
]
|
||||||
** 2,
|
** 2,
|
||||||
torch.ones(1, 1, self.crossfade_frame, device=device),
|
torch.ones(1, 1, self.crossfade_frame, device=device),
|
||||||
)
|
)
|
||||||
@ -491,12 +602,15 @@ if __name__ == '__main__':
|
|||||||
input_device_indices,
|
input_device_indices,
|
||||||
output_device_indices,
|
output_device_indices,
|
||||||
) = self.get_devices()
|
) = self.get_devices()
|
||||||
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
|
sd.default.device[0] = input_device_indices[
|
||||||
|
input_devices.index(input_device)
|
||||||
|
]
|
||||||
sd.default.device[1] = output_device_indices[
|
sd.default.device[1] = output_device_indices[
|
||||||
output_devices.index(output_device)
|
output_devices.index(output_device)
|
||||||
]
|
]
|
||||||
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
||||||
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
|
print(
|
||||||
|
"output device:" + str(sd.default.device[1]) + ":" + str(output_device)
|
||||||
|
)
|
||||||
|
|
||||||
gui = GUI()
|
gui = GUI()
|
||||||
|
@ -635,11 +635,11 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
if(rate):
|
if rate:
|
||||||
head=int(z_p.shape[2]*rate)
|
head = int(z_p.shape[2] * rate)
|
||||||
z_p=z_p[:,:,-head:]
|
z_p = z_p[:, :, -head:]
|
||||||
x_mask=x_mask[:,:,-head:]
|
x_mask = x_mask[:, :, -head:]
|
||||||
nsff0=nsff0[:,-head:]
|
nsff0 = nsff0[:, -head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, nsff0, g=g)
|
o = self.dec(z * x_mask, nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
@ -751,11 +751,11 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
|||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
if(rate):
|
if rate:
|
||||||
head=int(z_p.shape[2]*rate)
|
head = int(z_p.shape[2] * rate)
|
||||||
z_p=z_p[:,:,-head:]
|
z_p = z_p[:, :, -head:]
|
||||||
x_mask=x_mask[:,:,-head:]
|
x_mask = x_mask[:, :, -head:]
|
||||||
nsff0=nsff0[:,-head:]
|
nsff0 = nsff0[:, -head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, nsff0, g=g)
|
o = self.dec(z * x_mask, nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
@ -858,10 +858,10 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
if(rate):
|
if rate:
|
||||||
head=int(z_p.shape[2]*rate)
|
head = int(z_p.shape[2] * rate)
|
||||||
z_p=z_p[:,:,-head:]
|
z_p = z_p[:, :, -head:]
|
||||||
x_mask=x_mask[:,:,-head:]
|
x_mask = x_mask[:, :, -head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, g=g)
|
o = self.dec(z * x_mask, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
@ -964,10 +964,10 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
|||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
if(rate):
|
if rate:
|
||||||
head=int(z_p.shape[2]*rate)
|
head = int(z_p.shape[2] * rate)
|
||||||
z_p=z_p[:,:,-head:]
|
z_p = z_p[:, :, -head:]
|
||||||
x_mask=x_mask[:,:,-head:]
|
x_mask = x_mask[:, :, -head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec(z * x_mask, g=g)
|
o = self.dec(z * x_mask, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
244
rmvpe.py
244
rmvpe.py
@ -1,34 +1,46 @@
|
|||||||
import sys,torch,numpy as np,traceback,pdb
|
import sys, torch, numpy as np, traceback, pdb
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
class BiGRU(nn.Module):
|
class BiGRU(nn.Module):
|
||||||
def __init__(self, input_features, hidden_features, num_layers):
|
def __init__(self, input_features, hidden_features, num_layers):
|
||||||
super(BiGRU, self).__init__()
|
super(BiGRU, self).__init__()
|
||||||
self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
|
self.gru = nn.GRU(
|
||||||
|
input_features,
|
||||||
|
hidden_features,
|
||||||
|
num_layers=num_layers,
|
||||||
|
batch_first=True,
|
||||||
|
bidirectional=True,
|
||||||
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.gru(x)[0]
|
return self.gru(x)[0]
|
||||||
|
|
||||||
|
|
||||||
class ConvBlockRes(nn.Module):
|
class ConvBlockRes(nn.Module):
|
||||||
def __init__(self, in_channels, out_channels, momentum=0.01):
|
def __init__(self, in_channels, out_channels, momentum=0.01):
|
||||||
super(ConvBlockRes, self).__init__()
|
super(ConvBlockRes, self).__init__()
|
||||||
self.conv = nn.Sequential(
|
self.conv = nn.Sequential(
|
||||||
nn.Conv2d(in_channels=in_channels,
|
nn.Conv2d(
|
||||||
out_channels=out_channels,
|
in_channels=in_channels,
|
||||||
kernel_size=(3, 3),
|
out_channels=out_channels,
|
||||||
stride=(1, 1),
|
kernel_size=(3, 3),
|
||||||
padding=(1, 1),
|
stride=(1, 1),
|
||||||
bias=False),
|
padding=(1, 1),
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(
|
||||||
nn.Conv2d(in_channels=out_channels,
|
in_channels=out_channels,
|
||||||
out_channels=out_channels,
|
out_channels=out_channels,
|
||||||
kernel_size=(3, 3),
|
kernel_size=(3, 3),
|
||||||
stride=(1, 1),
|
stride=(1, 1),
|
||||||
padding=(1, 1),
|
padding=(1, 1),
|
||||||
bias=False),
|
bias=False,
|
||||||
|
),
|
||||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
)
|
)
|
||||||
@ -44,15 +56,29 @@ class ConvBlockRes(nn.Module):
|
|||||||
else:
|
else:
|
||||||
return self.conv(x) + x
|
return self.conv(x) + x
|
||||||
|
|
||||||
|
|
||||||
class Encoder(nn.Module):
|
class Encoder(nn.Module):
|
||||||
def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channels,
|
||||||
|
in_size,
|
||||||
|
n_encoders,
|
||||||
|
kernel_size,
|
||||||
|
n_blocks,
|
||||||
|
out_channels=16,
|
||||||
|
momentum=0.01,
|
||||||
|
):
|
||||||
super(Encoder, self).__init__()
|
super(Encoder, self).__init__()
|
||||||
self.n_encoders = n_encoders
|
self.n_encoders = n_encoders
|
||||||
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
||||||
self.layers = nn.ModuleList()
|
self.layers = nn.ModuleList()
|
||||||
self.latent_channels = []
|
self.latent_channels = []
|
||||||
for i in range(self.n_encoders):
|
for i in range(self.n_encoders):
|
||||||
self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
|
self.layers.append(
|
||||||
|
ResEncoderBlock(
|
||||||
|
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
||||||
|
)
|
||||||
|
)
|
||||||
self.latent_channels.append([out_channels, in_size])
|
self.latent_channels.append([out_channels, in_size])
|
||||||
in_channels = out_channels
|
in_channels = out_channels
|
||||||
out_channels *= 2
|
out_channels *= 2
|
||||||
@ -67,8 +93,12 @@ class Encoder(nn.Module):
|
|||||||
_, x = self.layers[i](x)
|
_, x = self.layers[i](x)
|
||||||
concat_tensors.append(_)
|
concat_tensors.append(_)
|
||||||
return x, concat_tensors
|
return x, concat_tensors
|
||||||
|
|
||||||
|
|
||||||
class ResEncoderBlock(nn.Module):
|
class ResEncoderBlock(nn.Module):
|
||||||
def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
|
def __init__(
|
||||||
|
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
||||||
|
):
|
||||||
super(ResEncoderBlock, self).__init__()
|
super(ResEncoderBlock, self).__init__()
|
||||||
self.n_blocks = n_blocks
|
self.n_blocks = n_blocks
|
||||||
self.conv = nn.ModuleList()
|
self.conv = nn.ModuleList()
|
||||||
@ -86,38 +116,48 @@ class ResEncoderBlock(nn.Module):
|
|||||||
return x, self.pool(x)
|
return x, self.pool(x)
|
||||||
else:
|
else:
|
||||||
return x
|
return x
|
||||||
class Intermediate(nn.Module):#
|
|
||||||
|
|
||||||
|
class Intermediate(nn.Module): #
|
||||||
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
||||||
super(Intermediate, self).__init__()
|
super(Intermediate, self).__init__()
|
||||||
self.n_inters = n_inters
|
self.n_inters = n_inters
|
||||||
self.layers = nn.ModuleList()
|
self.layers = nn.ModuleList()
|
||||||
self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
|
self.layers.append(
|
||||||
for i in range(self.n_inters-1):
|
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
||||||
self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
|
)
|
||||||
|
for i in range(self.n_inters - 1):
|
||||||
|
self.layers.append(
|
||||||
|
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
||||||
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
for i in range(self.n_inters):
|
for i in range(self.n_inters):
|
||||||
x = self.layers[i](x)
|
x = self.layers[i](x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class ResDecoderBlock(nn.Module):
|
class ResDecoderBlock(nn.Module):
|
||||||
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
||||||
super(ResDecoderBlock, self).__init__()
|
super(ResDecoderBlock, self).__init__()
|
||||||
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
||||||
self.n_blocks = n_blocks
|
self.n_blocks = n_blocks
|
||||||
self.conv1 = nn.Sequential(
|
self.conv1 = nn.Sequential(
|
||||||
nn.ConvTranspose2d(in_channels=in_channels,
|
nn.ConvTranspose2d(
|
||||||
out_channels=out_channels,
|
in_channels=in_channels,
|
||||||
kernel_size=(3, 3),
|
out_channels=out_channels,
|
||||||
stride=stride,
|
kernel_size=(3, 3),
|
||||||
padding=(1, 1),
|
stride=stride,
|
||||||
output_padding=out_padding,
|
padding=(1, 1),
|
||||||
bias=False),
|
output_padding=out_padding,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
)
|
)
|
||||||
self.conv2 = nn.ModuleList()
|
self.conv2 = nn.ModuleList()
|
||||||
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
||||||
for i in range(n_blocks-1):
|
for i in range(n_blocks - 1):
|
||||||
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
||||||
|
|
||||||
def forward(self, x, concat_tensor):
|
def forward(self, x, concat_tensor):
|
||||||
@ -126,6 +166,8 @@ class ResDecoderBlock(nn.Module):
|
|||||||
for i in range(self.n_blocks):
|
for i in range(self.n_blocks):
|
||||||
x = self.conv2[i](x)
|
x = self.conv2[i](x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class Decoder(nn.Module):
|
class Decoder(nn.Module):
|
||||||
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
||||||
super(Decoder, self).__init__()
|
super(Decoder, self).__init__()
|
||||||
@ -133,20 +175,40 @@ class Decoder(nn.Module):
|
|||||||
self.n_decoders = n_decoders
|
self.n_decoders = n_decoders
|
||||||
for i in range(self.n_decoders):
|
for i in range(self.n_decoders):
|
||||||
out_channels = in_channels // 2
|
out_channels = in_channels // 2
|
||||||
self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
|
self.layers.append(
|
||||||
|
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
||||||
|
)
|
||||||
in_channels = out_channels
|
in_channels = out_channels
|
||||||
|
|
||||||
def forward(self, x, concat_tensors):
|
def forward(self, x, concat_tensors):
|
||||||
for i in range(self.n_decoders):
|
for i in range(self.n_decoders):
|
||||||
x = self.layers[i](x, concat_tensors[-1-i])
|
x = self.layers[i](x, concat_tensors[-1 - i])
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class DeepUnet(nn.Module):
|
class DeepUnet(nn.Module):
|
||||||
def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
|
def __init__(
|
||||||
|
self,
|
||||||
|
kernel_size,
|
||||||
|
n_blocks,
|
||||||
|
en_de_layers=5,
|
||||||
|
inter_layers=4,
|
||||||
|
in_channels=1,
|
||||||
|
en_out_channels=16,
|
||||||
|
):
|
||||||
super(DeepUnet, self).__init__()
|
super(DeepUnet, self).__init__()
|
||||||
self.encoder = Encoder(in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels)
|
self.encoder = Encoder(
|
||||||
self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
|
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
||||||
self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
|
)
|
||||||
|
self.intermediate = Intermediate(
|
||||||
|
self.encoder.out_channel // 2,
|
||||||
|
self.encoder.out_channel,
|
||||||
|
inter_layers,
|
||||||
|
n_blocks,
|
||||||
|
)
|
||||||
|
self.decoder = Decoder(
|
||||||
|
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
||||||
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
x, concat_tensors = self.encoder(x)
|
x, concat_tensors = self.encoder(x)
|
||||||
@ -154,24 +216,38 @@ class DeepUnet(nn.Module):
|
|||||||
x = self.decoder(x, concat_tensors)
|
x = self.decoder(x, concat_tensors)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class E2E(nn.Module):
|
class E2E(nn.Module):
|
||||||
def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
|
def __init__(
|
||||||
en_out_channels=16):
|
self,
|
||||||
|
n_blocks,
|
||||||
|
n_gru,
|
||||||
|
kernel_size,
|
||||||
|
en_de_layers=5,
|
||||||
|
inter_layers=4,
|
||||||
|
in_channels=1,
|
||||||
|
en_out_channels=16,
|
||||||
|
):
|
||||||
super(E2E, self).__init__()
|
super(E2E, self).__init__()
|
||||||
self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
|
self.unet = DeepUnet(
|
||||||
|
kernel_size,
|
||||||
|
n_blocks,
|
||||||
|
en_de_layers,
|
||||||
|
inter_layers,
|
||||||
|
in_channels,
|
||||||
|
en_out_channels,
|
||||||
|
)
|
||||||
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
||||||
if n_gru:
|
if n_gru:
|
||||||
self.fc = nn.Sequential(
|
self.fc = nn.Sequential(
|
||||||
BiGRU(3 * 128, 256, n_gru),
|
BiGRU(3 * 128, 256, n_gru),
|
||||||
nn.Linear(512, 360),
|
nn.Linear(512, 360),
|
||||||
nn.Dropout(0.25),
|
nn.Dropout(0.25),
|
||||||
nn.Sigmoid()
|
nn.Sigmoid(),
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
self.fc = nn.Sequential(
|
self.fc = nn.Sequential(
|
||||||
nn.Linear(3 * N_MELS, N_CLASS),
|
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
||||||
nn.Dropout(0.25),
|
|
||||||
nn.Sigmoid()
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, mel):
|
def forward(self, mel):
|
||||||
@ -179,19 +255,23 @@ class E2E(nn.Module):
|
|||||||
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
||||||
x = self.fc(x)
|
x = self.fc(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
from librosa.filters import mel
|
from librosa.filters import mel
|
||||||
|
|
||||||
|
|
||||||
class MelSpectrogram(torch.nn.Module):
|
class MelSpectrogram(torch.nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
is_half,
|
is_half,
|
||||||
n_mel_channels,
|
n_mel_channels,
|
||||||
sampling_rate,
|
sampling_rate,
|
||||||
win_length,
|
win_length,
|
||||||
hop_length,
|
hop_length,
|
||||||
n_fft=None,
|
n_fft=None,
|
||||||
mel_fmin=0,
|
mel_fmin=0,
|
||||||
mel_fmax=None,
|
mel_fmax=None,
|
||||||
clamp=1e-5
|
clamp=1e-5,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
n_fft = win_length if n_fft is None else n_fft
|
n_fft = win_length if n_fft is None else n_fft
|
||||||
@ -202,7 +282,8 @@ class MelSpectrogram(torch.nn.Module):
|
|||||||
n_mels=n_mel_channels,
|
n_mels=n_mel_channels,
|
||||||
fmin=mel_fmin,
|
fmin=mel_fmin,
|
||||||
fmax=mel_fmax,
|
fmax=mel_fmax,
|
||||||
htk=True)
|
htk=True,
|
||||||
|
)
|
||||||
mel_basis = torch.from_numpy(mel_basis).float()
|
mel_basis = torch.from_numpy(mel_basis).float()
|
||||||
self.register_buffer("mel_basis", mel_basis)
|
self.register_buffer("mel_basis", mel_basis)
|
||||||
self.n_fft = win_length if n_fft is None else n_fft
|
self.n_fft = win_length if n_fft is None else n_fft
|
||||||
@ -211,16 +292,18 @@ class MelSpectrogram(torch.nn.Module):
|
|||||||
self.sampling_rate = sampling_rate
|
self.sampling_rate = sampling_rate
|
||||||
self.n_mel_channels = n_mel_channels
|
self.n_mel_channels = n_mel_channels
|
||||||
self.clamp = clamp
|
self.clamp = clamp
|
||||||
self.is_half=is_half
|
self.is_half = is_half
|
||||||
|
|
||||||
def forward(self, audio, keyshift=0, speed=1, center=True):
|
def forward(self, audio, keyshift=0, speed=1, center=True):
|
||||||
factor = 2 ** (keyshift / 12)
|
factor = 2 ** (keyshift / 12)
|
||||||
n_fft_new = int(np.round(self.n_fft * factor))
|
n_fft_new = int(np.round(self.n_fft * factor))
|
||||||
win_length_new = int(np.round(self.win_length * factor))
|
win_length_new = int(np.round(self.win_length * factor))
|
||||||
hop_length_new = int(np.round(self.hop_length * speed))
|
hop_length_new = int(np.round(self.hop_length * speed))
|
||||||
keyshift_key = str(keyshift) + '_' + str(audio.device)
|
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
||||||
if keyshift_key not in self.hann_window:
|
if keyshift_key not in self.hann_window:
|
||||||
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
|
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
||||||
|
audio.device
|
||||||
|
)
|
||||||
fft = torch.stft(
|
fft = torch.stft(
|
||||||
audio,
|
audio,
|
||||||
n_fft=n_fft_new,
|
n_fft=n_fft_new,
|
||||||
@ -228,51 +311,57 @@ class MelSpectrogram(torch.nn.Module):
|
|||||||
win_length=win_length_new,
|
win_length=win_length_new,
|
||||||
window=self.hann_window[keyshift_key],
|
window=self.hann_window[keyshift_key],
|
||||||
center=center,
|
center=center,
|
||||||
return_complex=True)
|
return_complex=True,
|
||||||
|
)
|
||||||
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
||||||
if keyshift != 0:
|
if keyshift != 0:
|
||||||
size = self.n_fft // 2 + 1
|
size = self.n_fft // 2 + 1
|
||||||
resize = magnitude.size(1)
|
resize = magnitude.size(1)
|
||||||
if resize < size:
|
if resize < size:
|
||||||
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
||||||
magnitude = magnitude[:, :size, :]* self.win_length / win_length_new
|
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
||||||
mel_output = torch.matmul(self.mel_basis, magnitude)
|
mel_output = torch.matmul(self.mel_basis, magnitude)
|
||||||
if(self.is_half==True):mel_output=mel_output.half()
|
if self.is_half == True:
|
||||||
|
mel_output = mel_output.half()
|
||||||
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
||||||
return log_mel_spec
|
return log_mel_spec
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class RMVPE:
|
class RMVPE:
|
||||||
def __init__(self, model_path,is_half, device=None):
|
def __init__(self, model_path, is_half, device=None):
|
||||||
self.resample_kernel = {}
|
self.resample_kernel = {}
|
||||||
model = E2E(4, 1, (2, 2))
|
model = E2E(4, 1, (2, 2))
|
||||||
ckpt = torch.load(model_path,map_location="cpu")
|
ckpt = torch.load(model_path, map_location="cpu")
|
||||||
model.load_state_dict(ckpt)
|
model.load_state_dict(ckpt)
|
||||||
model.eval()
|
model.eval()
|
||||||
if(is_half==True):model=model.half()
|
if is_half == True:
|
||||||
|
model = model.half()
|
||||||
self.model = model
|
self.model = model
|
||||||
self.resample_kernel = {}
|
self.resample_kernel = {}
|
||||||
self.is_half=is_half
|
self.is_half = is_half
|
||||||
if device is None:
|
if device is None:
|
||||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
self.device=device
|
self.device = device
|
||||||
self.mel_extractor = MelSpectrogram(is_half,128, 16000, 1024, 160, None, 30, 8000).to(device)
|
self.mel_extractor = MelSpectrogram(
|
||||||
|
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
||||||
|
).to(device)
|
||||||
self.model = self.model.to(device)
|
self.model = self.model.to(device)
|
||||||
cents_mapping = (20 * np.arange(360) + 1997.3794084376191)
|
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
||||||
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
||||||
|
|
||||||
def mel2hidden(self, mel):
|
def mel2hidden(self, mel):
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
n_frames = mel.shape[-1]
|
n_frames = mel.shape[-1]
|
||||||
mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode='reflect')
|
mel = F.pad(
|
||||||
|
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
||||||
|
)
|
||||||
hidden = self.model(mel)
|
hidden = self.model(mel)
|
||||||
return hidden[:, :n_frames]
|
return hidden[:, :n_frames]
|
||||||
|
|
||||||
def decode(self, hidden, thred=0.03):
|
def decode(self, hidden, thred=0.03):
|
||||||
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
||||||
f0 = 10 * (2 ** (cents_pred / 1200))
|
f0 = 10 * (2 ** (cents_pred / 1200))
|
||||||
f0[f0==10]=0
|
f0[f0 == 10] = 0
|
||||||
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
||||||
return f0
|
return f0
|
||||||
|
|
||||||
@ -286,15 +375,16 @@ class RMVPE:
|
|||||||
hidden = self.mel2hidden(mel)
|
hidden = self.mel2hidden(mel)
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
# t2=ttime()
|
# t2=ttime()
|
||||||
hidden=hidden.squeeze(0).cpu().numpy()
|
hidden = hidden.squeeze(0).cpu().numpy()
|
||||||
if(self.is_half==True):hidden=hidden.astype("float32")
|
if self.is_half == True:
|
||||||
|
hidden = hidden.astype("float32")
|
||||||
f0 = self.decode(hidden, thred=thred)
|
f0 = self.decode(hidden, thred=thred)
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
# t3=ttime()
|
# t3=ttime()
|
||||||
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
||||||
return f0
|
return f0
|
||||||
|
|
||||||
def to_local_average_cents(self,salience, thred=0.05):
|
def to_local_average_cents(self, salience, thred=0.05):
|
||||||
# t0 = ttime()
|
# t0 = ttime()
|
||||||
center = np.argmax(salience, axis=1) # 帧长#index
|
center = np.argmax(salience, axis=1) # 帧长#index
|
||||||
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
||||||
@ -305,8 +395,8 @@ class RMVPE:
|
|||||||
starts = center - 4
|
starts = center - 4
|
||||||
ends = center + 5
|
ends = center + 5
|
||||||
for idx in range(salience.shape[0]):
|
for idx in range(salience.shape[0]):
|
||||||
todo_salience.append(salience[:, starts[idx]:ends[idx]][idx])
|
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
||||||
todo_cents_mapping.append(self.cents_mapping[starts[idx]:ends[idx]])
|
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
||||||
# t2 = ttime()
|
# t2 = ttime()
|
||||||
todo_salience = np.array(todo_salience) # 帧长,9
|
todo_salience = np.array(todo_salience) # 帧长,9
|
||||||
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
||||||
@ -321,8 +411,6 @@ class RMVPE:
|
|||||||
return devided
|
return devided
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# if __name__ == '__main__':
|
# if __name__ == '__main__':
|
||||||
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
|
||||||
# if len(audio.shape) > 1:
|
# if len(audio.shape) > 1:
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
import faiss,torch,traceback,parselmouth,numpy as np,torchcrepe,torch.nn as nn,pyworld
|
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
|
||||||
from fairseq import checkpoint_utils
|
from fairseq import checkpoint_utils
|
||||||
from lib.infer_pack.models import (
|
from lib.infer_pack.models import (
|
||||||
SynthesizerTrnMs256NSFsid,
|
SynthesizerTrnMs256NSFsid,
|
||||||
@ -6,29 +6,32 @@ from lib.infer_pack.models import (
|
|||||||
SynthesizerTrnMs768NSFsid,
|
SynthesizerTrnMs768NSFsid,
|
||||||
SynthesizerTrnMs768NSFsid_nono,
|
SynthesizerTrnMs768NSFsid_nono,
|
||||||
)
|
)
|
||||||
import os,sys
|
import os, sys
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import scipy.signal as signal
|
import scipy.signal as signal
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
from config import Config
|
from config import Config
|
||||||
from multiprocessing import Manager as M
|
from multiprocessing import Manager as M
|
||||||
|
|
||||||
mm = M()
|
mm = M()
|
||||||
config = Config()
|
config = Config()
|
||||||
|
|
||||||
|
|
||||||
class RVC:
|
class RVC:
|
||||||
def __init__(
|
def __init__(
|
||||||
self, key, pth_path, index_path, index_rate, n_cpu,inp_q,opt_q,device
|
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
初始化
|
初始化
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
global config
|
global config
|
||||||
self.inp_q=inp_q
|
self.inp_q = inp_q
|
||||||
self.opt_q=opt_q
|
self.opt_q = opt_q
|
||||||
self.device=device
|
self.device = device
|
||||||
self.f0_up_key = key
|
self.f0_up_key = key
|
||||||
self.time_step = 160 / 16000 * 1000
|
self.time_step = 160 / 16000 * 1000
|
||||||
self.f0_min = 50
|
self.f0_min = 50
|
||||||
@ -81,7 +84,7 @@ class RVC:
|
|||||||
self.net_g = self.net_g.half()
|
self.net_g = self.net_g.half()
|
||||||
else:
|
else:
|
||||||
self.net_g = self.net_g.float()
|
self.net_g = self.net_g.float()
|
||||||
self.is_half=config.is_half
|
self.is_half = config.is_half
|
||||||
except:
|
except:
|
||||||
print(traceback.format_exc())
|
print(traceback.format_exc())
|
||||||
|
|
||||||
@ -102,29 +105,33 @@ class RVC:
|
|||||||
|
|
||||||
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
||||||
n_cpu = int(n_cpu)
|
n_cpu = int(n_cpu)
|
||||||
if (method == "crepe"): return self.get_f0_crepe(x, f0_up_key)
|
if method == "crepe":
|
||||||
if (method == "rmvpe"): return self.get_f0_rmvpe(x, f0_up_key)
|
return self.get_f0_crepe(x, f0_up_key)
|
||||||
if (method == "pm"):
|
if method == "rmvpe":
|
||||||
|
return self.get_f0_rmvpe(x, f0_up_key)
|
||||||
|
if method == "pm":
|
||||||
p_len = x.shape[0] // 160
|
p_len = x.shape[0] // 160
|
||||||
f0 = (
|
f0 = (
|
||||||
parselmouth.Sound(x, 16000)
|
parselmouth.Sound(x, 16000)
|
||||||
.to_pitch_ac(
|
.to_pitch_ac(
|
||||||
time_step=0.01,
|
time_step=0.01,
|
||||||
voicing_threshold=0.6,
|
voicing_threshold=0.6,
|
||||||
pitch_floor=50,
|
pitch_floor=50,
|
||||||
pitch_ceiling=1100,
|
pitch_ceiling=1100,
|
||||||
)
|
)
|
||||||
.selected_array["frequency"]
|
.selected_array["frequency"]
|
||||||
)
|
)
|
||||||
|
|
||||||
pad_size = (p_len - len(f0) + 1) // 2
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
print(pad_size, p_len - len(f0) - pad_size)
|
print(pad_size, p_len - len(f0) - pad_size)
|
||||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
f0 = np.pad(
|
||||||
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||||
|
)
|
||||||
|
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
return self.get_f0_post(f0)
|
return self.get_f0_post(f0)
|
||||||
if (n_cpu == 1):
|
if n_cpu == 1:
|
||||||
f0, t = pyworld.harvest(
|
f0, t = pyworld.harvest(
|
||||||
x.astype(np.double),
|
x.astype(np.double),
|
||||||
fs=16000,
|
fs=16000,
|
||||||
@ -142,23 +149,27 @@ class RVC:
|
|||||||
res_f0 = mm.dict()
|
res_f0 = mm.dict()
|
||||||
for idx in range(n_cpu):
|
for idx in range(n_cpu):
|
||||||
tail = part_length * (idx + 1) + 320
|
tail = part_length * (idx + 1) + 320
|
||||||
if (idx == 0):
|
if idx == 0:
|
||||||
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||||||
else:
|
else:
|
||||||
self.inp_q.put((idx, x[part_length * idx - 320:tail], res_f0, n_cpu, ts))
|
self.inp_q.put(
|
||||||
while (1):
|
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
||||||
|
)
|
||||||
|
while 1:
|
||||||
res_ts = self.opt_q.get()
|
res_ts = self.opt_q.get()
|
||||||
if (res_ts == ts):
|
if res_ts == ts:
|
||||||
break
|
break
|
||||||
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
||||||
for idx, f0 in enumerate(f0s):
|
for idx, f0 in enumerate(f0s):
|
||||||
if (idx == 0):
|
if idx == 0:
|
||||||
f0 = f0[:-3]
|
f0 = f0[:-3]
|
||||||
elif (idx != n_cpu - 1):
|
elif idx != n_cpu - 1:
|
||||||
f0 = f0[2:-3]
|
f0 = f0[2:-3]
|
||||||
else:
|
else:
|
||||||
f0 = f0[2:-1]
|
f0 = f0[2:-1]
|
||||||
f0bak[part_length * idx // 160:part_length * idx // 160 + f0.shape[0]] = f0
|
f0bak[
|
||||||
|
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
|
||||||
|
] = f0
|
||||||
f0bak = signal.medfilt(f0bak, 3)
|
f0bak = signal.medfilt(f0bak, 3)
|
||||||
f0bak *= pow(2, f0_up_key / 12)
|
f0bak *= pow(2, f0_up_key / 12)
|
||||||
return self.get_f0_post(f0bak)
|
return self.get_f0_post(f0bak)
|
||||||
@ -184,16 +195,28 @@ class RVC:
|
|||||||
return self.get_f0_post(f0)
|
return self.get_f0_post(f0)
|
||||||
|
|
||||||
def get_f0_rmvpe(self, x, f0_up_key):
|
def get_f0_rmvpe(self, x, f0_up_key):
|
||||||
if (hasattr(self, "model_rmvpe") == False):
|
if hasattr(self, "model_rmvpe") == False:
|
||||||
from rmvpe import RMVPE
|
from rmvpe import RMVPE
|
||||||
|
|
||||||
print("loading rmvpe model")
|
print("loading rmvpe model")
|
||||||
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=self.is_half, device=self.device)
|
self.model_rmvpe = RMVPE(
|
||||||
|
"rmvpe.pt", is_half=self.is_half, device=self.device
|
||||||
|
)
|
||||||
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
||||||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
return self.get_f0_post(f0)
|
return self.get_f0_post(f0)
|
||||||
|
|
||||||
def infer(self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method) -> np.ndarray:
|
def infer(
|
||||||
|
self,
|
||||||
|
feats: torch.Tensor,
|
||||||
|
indata: np.ndarray,
|
||||||
|
rate1,
|
||||||
|
rate2,
|
||||||
|
cache_pitch,
|
||||||
|
cache_pitchf,
|
||||||
|
f0method,
|
||||||
|
) -> np.ndarray:
|
||||||
feats = feats.view(1, -1)
|
feats = feats.view(1, -1)
|
||||||
if config.is_half:
|
if config.is_half:
|
||||||
feats = feats.half()
|
feats = feats.half()
|
||||||
@ -209,13 +232,12 @@ class RVC:
|
|||||||
"output_layer": 9 if self.version == "v1" else 12,
|
"output_layer": 9 if self.version == "v1" else 12,
|
||||||
}
|
}
|
||||||
logits = self.model.extract_features(**inputs)
|
logits = self.model.extract_features(**inputs)
|
||||||
feats = self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
feats = (
|
||||||
|
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||||
|
)
|
||||||
t2 = ttime()
|
t2 = ttime()
|
||||||
try:
|
try:
|
||||||
if (
|
if hasattr(self, "index") and self.index_rate != 0:
|
||||||
hasattr(self, "index")
|
|
||||||
and self.index_rate != 0
|
|
||||||
):
|
|
||||||
leng_replace_head = int(rate1 * feats[0].shape[0])
|
leng_replace_head = int(rate1 * feats[0].shape[0])
|
||||||
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
||||||
score, ix = self.index.search(npy, k=8)
|
score, ix = self.index.search(npy, k=8)
|
||||||
@ -237,8 +259,10 @@ class RVC:
|
|||||||
t3 = ttime()
|
t3 = ttime()
|
||||||
if self.if_f0 == 1:
|
if self.if_f0 == 1:
|
||||||
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
||||||
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0]:], pitch[:-1])
|
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
|
||||||
cache_pitchf[:] = np.append(cache_pitchf[pitchf[:-1].shape[0]:], pitchf[:-1])
|
cache_pitchf[:] = np.append(
|
||||||
|
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
|
||||||
|
)
|
||||||
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
||||||
else:
|
else:
|
||||||
cache_pitch, cache_pitchf = None, None
|
cache_pitch, cache_pitchf = None, None
|
||||||
@ -256,13 +280,17 @@ class RVC:
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if self.if_f0 == 1:
|
if self.if_f0 == 1:
|
||||||
infered_audio = (
|
infered_audio = (
|
||||||
self.net_g.infer(feats, p_len, cache_pitch, cache_pitchf, sid, rate2)[0][0, 0]
|
self.net_g.infer(
|
||||||
.data.cpu()
|
feats, p_len, cache_pitch, cache_pitchf, sid, rate2
|
||||||
.float()
|
)[0][0, 0]
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
infered_audio = (
|
infered_audio = (
|
||||||
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0].data.cpu().float()
|
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
|
||||||
|
.data.cpu()
|
||||||
|
.float()
|
||||||
)
|
)
|
||||||
t5 = ttime()
|
t5 = ttime()
|
||||||
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
||||||
|
@ -1,10 +1,11 @@
|
|||||||
import numpy as np, parselmouth, torch, pdb,sys,os
|
import numpy as np, parselmouth, torch, pdb, sys, os
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import scipy.signal as signal
|
import scipy.signal as signal
|
||||||
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
||||||
from scipy import signal
|
from scipy import signal
|
||||||
from functools import lru_cache
|
from functools import lru_cache
|
||||||
|
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
sys.path.append(now_dir)
|
sys.path.append(now_dir)
|
||||||
|
|
||||||
@ -127,10 +128,13 @@ class VC(object):
|
|||||||
f0[pd < 0.1] = 0
|
f0[pd < 0.1] = 0
|
||||||
f0 = f0[0].cpu().numpy()
|
f0 = f0[0].cpu().numpy()
|
||||||
elif f0_method == "rmvpe":
|
elif f0_method == "rmvpe":
|
||||||
if(hasattr(self,"model_rmvpe")==False):
|
if hasattr(self, "model_rmvpe") == False:
|
||||||
from rmvpe import RMVPE
|
from rmvpe import RMVPE
|
||||||
|
|
||||||
print("loading rmvpe model")
|
print("loading rmvpe model")
|
||||||
self.model_rmvpe = RMVPE("rmvpe.pt",is_half=self.is_half, device=self.device)
|
self.model_rmvpe = RMVPE(
|
||||||
|
"rmvpe.pt", is_half=self.is_half, device=self.device
|
||||||
|
)
|
||||||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||||||
f0 *= pow(2, f0_up_key / 12)
|
f0 *= pow(2, f0_up_key / 12)
|
||||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||||
|
Loading…
Reference in New Issue
Block a user