Format code (#727)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
github-actions[bot] 2023-07-13 14:35:24 +08:00 committed by GitHub
parent 6c13f1fe52
commit 9739f3085d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 418 additions and 184 deletions

214
gui_v1.py
View File

@ -1,29 +1,34 @@
import os,sys
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
import multiprocessing
class Harvest(multiprocessing.Process):
def __init__(self,inp_q,opt_q):
def __init__(self, inp_q, opt_q):
multiprocessing.Process.__init__(self)
self.inp_q=inp_q
self.opt_q=opt_q
self.inp_q = inp_q
self.opt_q = opt_q
def run(self):
import numpy as np, pyworld
while(1):
idx, x, res_f0,n_cpu,ts=self.inp_q.get()
f0,t=pyworld.harvest(
while 1:
idx, x, res_f0, n_cpu, ts = self.inp_q.get()
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
f0_ceil=1100,
f0_floor=50,
frame_period=10,
)
res_f0[idx]=f0
if(len(res_f0.keys())>=n_cpu):
res_f0[idx] = f0
if len(res_f0.keys()) >= n_cpu:
self.opt_q.put(ts)
if __name__ == '__main__':
if __name__ == "__main__":
from multiprocessing import Queue
from queue import Empty
import numpy as np
@ -43,11 +48,12 @@ if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
current_dir = os.getcwd()
inp_q = Queue()
opt_q=Queue()
n_cpu=min(cpu_count(),8)
opt_q = Queue()
n_cpu = min(cpu_count(), 8)
for _ in range(n_cpu):
Harvest(inp_q,opt_q).start()
Harvest(inp_q, opt_q).start()
from rvc_for_realtime import RVC
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
@ -62,9 +68,8 @@ if __name__ == '__main__':
self.I_noise_reduce = False
self.O_noise_reduce = False
self.index_rate = 0.3
self.n_cpu=min(n_cpu,8)
self.f0method="harvest"
self.n_cpu = min(n_cpu, 8)
self.f0method = "harvest"
class GUI:
def __init__(self) -> None:
@ -78,10 +83,10 @@ if __name__ == '__main__':
try:
with open("values1.json", "r") as j:
data = json.load(j)
data["pm"]=data["f0method"]=="pm"
data["harvest"]=data["f0method"]=="harvest"
data["crepe"]=data["f0method"]=="crepe"
data["rmvpe"]=data["f0method"]=="rmvpe"
data["pm"] = data["f0method"] == "pm"
data["harvest"] = data["f0method"] == "harvest"
data["crepe"] = data["f0method"] == "crepe"
data["rmvpe"] = data["f0method"] == "rmvpe"
except:
with open("values1.json", "w") as j:
data = {
@ -191,10 +196,30 @@ if __name__ == '__main__':
],
[
sg.Text(i18n("音高算法")),
sg.Radio("pm","f0method",key="pm",default=data.get("pm","")==True),
sg.Radio("harvest","f0method",key="harvest",default=data.get("harvest","")==True),
sg.Radio("crepe","f0method",key="crepe",default=data.get("crepe","")==True),
sg.Radio("rmvpe","f0method",key="rmvpe",default=data.get("rmvpe","")==True),
sg.Radio(
"pm",
"f0method",
key="pm",
default=data.get("pm", "") == True,
),
sg.Radio(
"harvest",
"f0method",
key="harvest",
default=data.get("harvest", "") == True,
),
sg.Radio(
"crepe",
"f0method",
key="crepe",
default=data.get("crepe", "") == True,
),
sg.Radio(
"rmvpe",
"f0method",
key="rmvpe",
default=data.get("rmvpe", "") == True,
),
],
],
title=i18n("常规设置"),
@ -218,7 +243,9 @@ if __name__ == '__main__':
key="n_cpu",
resolution=1,
orientation="h",
default_value=data.get("n_cpu", min(self.config.n_cpu,n_cpu)),
default_value=data.get(
"n_cpu", min(self.config.n_cpu, n_cpu)
),
),
],
[
@ -281,7 +308,14 @@ if __name__ == '__main__':
"crossfade_length": values["crossfade_length"],
"extra_time": values["extra_time"],
"n_cpu": values["n_cpu"],
"f0method": ["pm","harvest","crepe","rmvpe"][[values["pm"],values["harvest"],values["crepe"],values["rmvpe"]].index(True)],
"f0method": ["pm", "harvest", "crepe", "rmvpe"][
[
values["pm"],
values["harvest"],
values["crepe"],
values["rmvpe"],
].index(True)
],
}
with open("values1.json", "w") as j:
json.dump(settings, j)
@ -314,7 +348,14 @@ if __name__ == '__main__':
self.config.O_noise_reduce = values["O_noise_reduce"]
self.config.index_rate = values["index_rate"]
self.config.n_cpu = values["n_cpu"]
self.config.f0method = ["pm","harvest","crepe","rmvpe"][[values["pm"],values["harvest"],values["crepe"],values["rmvpe"]].index(True)]
self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][
[
values["pm"],
values["harvest"],
values["crepe"],
values["rmvpe"],
].index(True)
]
return True
def start_vc(self):
@ -325,20 +366,64 @@ if __name__ == '__main__':
self.config.pth_path,
self.config.index_path,
self.config.index_rate,
self.config.n_cpu,inp_q,opt_q,device
self.config.n_cpu,
inp_q,
opt_q,
device,
)
self.config.samplerate = self.rvc.tgt_sr
self.config.crossfade_time = min(
self.config.crossfade_time, self.config.block_time
)
self.config.samplerate=self.rvc.tgt_sr
self.config.crossfade_time=min(self.config.crossfade_time,self.config.block_time)
self.block_frame = int(self.config.block_time * self.config.samplerate)
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
self.crossfade_frame = int(
self.config.crossfade_time * self.config.samplerate
)
self.sola_search_frame = int(0.01 * self.config.samplerate)
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
self.zc=self.rvc.tgt_sr//100
self.input_wav: np.ndarray = np.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc),dtype="float32",)
self.output_wav_cache: torch.Tensor = torch.zeros(int(np.ceil((self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)/self.zc)*self.zc), device=device,dtype=torch.float32)
self.pitch: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="int32",)
self.pitchf: np.ndarray = np.zeros(self.input_wav.shape[0]//self.zc,dtype="float64",)
self.output_wav: torch.Tensor = torch.zeros(self.block_frame, device=device, dtype=torch.float32)
self.zc = self.rvc.tgt_sr // 100
self.input_wav: np.ndarray = np.zeros(
int(
np.ceil(
(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame
)
/ self.zc
)
* self.zc
),
dtype="float32",
)
self.output_wav_cache: torch.Tensor = torch.zeros(
int(
np.ceil(
(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame
)
/ self.zc
)
* self.zc
),
device=device,
dtype=torch.float32,
)
self.pitch: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc,
dtype="int32",
)
self.pitchf: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc,
dtype="float64",
)
self.output_wav: torch.Tensor = torch.zeros(
self.block_frame, device=device, dtype=torch.float32
)
self.sola_buffer: torch.Tensor = torch.zeros(
self.crossfade_frame, device=device, dtype=torch.float32
)
@ -384,22 +469,46 @@ if __name__ == '__main__':
rms = librosa.feature.rms(
y=indata, frame_length=frame_length, hop_length=hop_length
)
if(self.config.threhold>-60):
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
if self.config.threhold > -60:
db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * hop_length : (i + 1) * hop_length] = 0
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
# infer
inp=torch.from_numpy(self.input_wav).to(device)
inp = torch.from_numpy(self.input_wav).to(device)
##0
res1=self.resampler(inp)
res1 = self.resampler(inp)
###55%
rate1=self.block_frame/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
rate2=(self.crossfade_frame + self.sola_search_frame + self.block_frame)/(self.extra_frame+ self.crossfade_frame+ self.sola_search_frame+ self.block_frame)
res2=self.rvc.infer(res1,res1[-self.block_frame:].cpu().numpy(),rate1,rate2,self.pitch,self.pitchf,self.config.f0method)
self.output_wav_cache[-res2.shape[0]:]=res2
infer_wav = self.output_wav_cache[-self.crossfade_frame - self.sola_search_frame - self.block_frame :]
rate1 = self.block_frame / (
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame
)
rate2 = (
self.crossfade_frame + self.sola_search_frame + self.block_frame
) / (
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame
)
res2 = self.rvc.infer(
res1,
res1[-self.block_frame :].cpu().numpy(),
rate1,
rate2,
self.pitch,
self.pitchf,
self.config.f0method,
)
self.output_wav_cache[-res2.shape[0] :] = res2
infer_wav = self.output_wav_cache[
-self.crossfade_frame - self.sola_search_frame - self.block_frame :
]
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
cor_nom = F.conv1d(
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
@ -407,7 +516,9 @@ if __name__ == '__main__':
)
cor_den = torch.sqrt(
F.conv1d(
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
infer_wav[
None, None, : self.crossfade_frame + self.sola_search_frame
]
** 2,
torch.ones(1, 1, self.crossfade_frame, device=device),
)
@ -491,12 +602,15 @@ if __name__ == '__main__':
input_device_indices,
output_device_indices,
) = self.get_devices()
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[0] = input_device_indices[
input_devices.index(input_device)
]
sd.default.device[1] = output_device_indices[
output_devices.index(output_device)
]
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
print(
"output device:" + str(sd.default.device[1]) + ":" + str(output_device)
)
gui = GUI()

View File

@ -635,11 +635,11 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if(rate):
head=int(z_p.shape[2]*rate)
z_p=z_p[:,:,-head:]
x_mask=x_mask[:,:,-head:]
nsff0=nsff0[:,-head:]
if rate:
head = int(z_p.shape[2] * rate)
z_p = z_p[:, :, -head:]
x_mask = x_mask[:, :, -head:]
nsff0 = nsff0[:, -head:]
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
@ -751,11 +751,11 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if(rate):
head=int(z_p.shape[2]*rate)
z_p=z_p[:,:,-head:]
x_mask=x_mask[:,:,-head:]
nsff0=nsff0[:,-head:]
if rate:
head = int(z_p.shape[2] * rate)
z_p = z_p[:, :, -head:]
x_mask = x_mask[:, :, -head:]
nsff0 = nsff0[:, -head:]
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
@ -858,10 +858,10 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if(rate):
head=int(z_p.shape[2]*rate)
z_p=z_p[:,:,-head:]
x_mask=x_mask[:,:,-head:]
if rate:
head = int(z_p.shape[2] * rate)
z_p = z_p[:, :, -head:]
x_mask = x_mask[:, :, -head:]
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)
@ -964,10 +964,10 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if(rate):
head=int(z_p.shape[2]*rate)
z_p=z_p[:,:,-head:]
x_mask=x_mask[:,:,-head:]
if rate:
head = int(z_p.shape[2] * rate)
z_p = z_p[:, :, -head:]
x_mask = x_mask[:, :, -head:]
z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p)

200
rmvpe.py
View File

@ -1,34 +1,46 @@
import sys,torch,numpy as np,traceback,pdb
import sys, torch, numpy as np, traceback, pdb
import torch.nn as nn
from time import time as ttime
import torch.nn.functional as F
class BiGRU(nn.Module):
def __init__(self, input_features, hidden_features, num_layers):
super(BiGRU, self).__init__()
self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
self.gru = nn.GRU(
input_features,
hidden_features,
num_layers=num_layers,
batch_first=True,
bidirectional=True,
)
def forward(self, x):
return self.gru(x)[0]
class ConvBlockRes(nn.Module):
def __init__(self, in_channels, out_channels, momentum=0.01):
super(ConvBlockRes, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels=in_channels,
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
nn.Conv2d(in_channels=out_channels,
nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
@ -44,15 +56,29 @@ class ConvBlockRes(nn.Module):
else:
return self.conv(x) + x
class Encoder(nn.Module):
def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
def __init__(
self,
in_channels,
in_size,
n_encoders,
kernel_size,
n_blocks,
out_channels=16,
momentum=0.01,
):
super(Encoder, self).__init__()
self.n_encoders = n_encoders
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
self.layers = nn.ModuleList()
self.latent_channels = []
for i in range(self.n_encoders):
self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
self.layers.append(
ResEncoderBlock(
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
)
)
self.latent_channels.append([out_channels, in_size])
in_channels = out_channels
out_channels *= 2
@ -67,8 +93,12 @@ class Encoder(nn.Module):
_, x = self.layers[i](x)
concat_tensors.append(_)
return x, concat_tensors
class ResEncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
def __init__(
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
):
super(ResEncoderBlock, self).__init__()
self.n_blocks = n_blocks
self.conv = nn.ModuleList()
@ -86,38 +116,48 @@ class ResEncoderBlock(nn.Module):
return x, self.pool(x)
else:
return x
class Intermediate(nn.Module):#
class Intermediate(nn.Module): #
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
super(Intermediate, self).__init__()
self.n_inters = n_inters
self.layers = nn.ModuleList()
self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
for i in range(self.n_inters-1):
self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
self.layers.append(
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
)
for i in range(self.n_inters - 1):
self.layers.append(
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
)
def forward(self, x):
for i in range(self.n_inters):
x = self.layers[i](x)
return x
class ResDecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
super(ResDecoderBlock, self).__init__()
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
self.n_blocks = n_blocks
self.conv1 = nn.Sequential(
nn.ConvTranspose2d(in_channels=in_channels,
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=stride,
padding=(1, 1),
output_padding=out_padding,
bias=False),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
self.conv2 = nn.ModuleList()
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
for i in range(n_blocks-1):
for i in range(n_blocks - 1):
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
def forward(self, x, concat_tensor):
@ -126,6 +166,8 @@ class ResDecoderBlock(nn.Module):
for i in range(self.n_blocks):
x = self.conv2[i](x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
super(Decoder, self).__init__()
@ -133,20 +175,40 @@ class Decoder(nn.Module):
self.n_decoders = n_decoders
for i in range(self.n_decoders):
out_channels = in_channels // 2
self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
self.layers.append(
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
)
in_channels = out_channels
def forward(self, x, concat_tensors):
for i in range(self.n_decoders):
x = self.layers[i](x, concat_tensors[-1-i])
x = self.layers[i](x, concat_tensors[-1 - i])
return x
class DeepUnet(nn.Module):
def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
def __init__(
self,
kernel_size,
n_blocks,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(DeepUnet, self).__init__()
self.encoder = Encoder(in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels)
self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
self.encoder = Encoder(
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
)
self.intermediate = Intermediate(
self.encoder.out_channel // 2,
self.encoder.out_channel,
inter_layers,
n_blocks,
)
self.decoder = Decoder(
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
)
def forward(self, x):
x, concat_tensors = self.encoder(x)
@ -154,24 +216,38 @@ class DeepUnet(nn.Module):
x = self.decoder(x, concat_tensors)
return x
class E2E(nn.Module):
def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
en_out_channels=16):
def __init__(
self,
n_blocks,
n_gru,
kernel_size,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(E2E, self).__init__()
self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
self.unet = DeepUnet(
kernel_size,
n_blocks,
en_de_layers,
inter_layers,
in_channels,
en_out_channels,
)
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
if n_gru:
self.fc = nn.Sequential(
BiGRU(3 * 128, 256, n_gru),
nn.Linear(512, 360),
nn.Dropout(0.25),
nn.Sigmoid()
nn.Sigmoid(),
)
else:
self.fc = nn.Sequential(
nn.Linear(3 * N_MELS, N_CLASS),
nn.Dropout(0.25),
nn.Sigmoid()
nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
)
def forward(self, mel):
@ -179,7 +255,11 @@ class E2E(nn.Module):
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
x = self.fc(x)
return x
from librosa.filters import mel
class MelSpectrogram(torch.nn.Module):
def __init__(
self,
@ -191,7 +271,7 @@ class MelSpectrogram(torch.nn.Module):
n_fft=None,
mel_fmin=0,
mel_fmax=None,
clamp=1e-5
clamp=1e-5,
):
super().__init__()
n_fft = win_length if n_fft is None else n_fft
@ -202,7 +282,8 @@ class MelSpectrogram(torch.nn.Module):
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
htk=True)
htk=True,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.n_fft = win_length if n_fft is None else n_fft
@ -211,16 +292,18 @@ class MelSpectrogram(torch.nn.Module):
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.clamp = clamp
self.is_half=is_half
self.is_half = is_half
def forward(self, audio, keyshift=0, speed=1, center=True):
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(self.n_fft * factor))
win_length_new = int(np.round(self.win_length * factor))
hop_length_new = int(np.round(self.hop_length * speed))
keyshift_key = str(keyshift) + '_' + str(audio.device)
keyshift_key = str(keyshift) + "_" + str(audio.device)
if keyshift_key not in self.hann_window:
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
audio.device
)
fft = torch.stft(
audio,
n_fft=n_fft_new,
@ -228,51 +311,57 @@ class MelSpectrogram(torch.nn.Module):
win_length=win_length_new,
window=self.hann_window[keyshift_key],
center=center,
return_complex=True)
return_complex=True,
)
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
if keyshift != 0:
size = self.n_fft // 2 + 1
resize = magnitude.size(1)
if resize < size:
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
magnitude = magnitude[:, :size, :]* self.win_length / win_length_new
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
mel_output = torch.matmul(self.mel_basis, magnitude)
if(self.is_half==True):mel_output=mel_output.half()
if self.is_half == True:
mel_output = mel_output.half()
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
return log_mel_spec
class RMVPE:
def __init__(self, model_path,is_half, device=None):
def __init__(self, model_path, is_half, device=None):
self.resample_kernel = {}
model = E2E(4, 1, (2, 2))
ckpt = torch.load(model_path,map_location="cpu")
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
if(is_half==True):model=model.half()
if is_half == True:
model = model.half()
self.model = model
self.resample_kernel = {}
self.is_half=is_half
self.is_half = is_half
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device=device
self.mel_extractor = MelSpectrogram(is_half,128, 16000, 1024, 160, None, 30, 8000).to(device)
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.mel_extractor = MelSpectrogram(
is_half, 128, 16000, 1024, 160, None, 30, 8000
).to(device)
self.model = self.model.to(device)
cents_mapping = (20 * np.arange(360) + 1997.3794084376191)
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
def mel2hidden(self, mel):
with torch.no_grad():
n_frames = mel.shape[-1]
mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode='reflect')
mel = F.pad(
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
)
hidden = self.model(mel)
return hidden[:, :n_frames]
def decode(self, hidden, thred=0.03):
cents_pred = self.to_local_average_cents(hidden, thred=thred)
f0 = 10 * (2 ** (cents_pred / 1200))
f0[f0==10]=0
f0[f0 == 10] = 0
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
return f0
@ -286,15 +375,16 @@ class RMVPE:
hidden = self.mel2hidden(mel)
# torch.cuda.synchronize()
# t2=ttime()
hidden=hidden.squeeze(0).cpu().numpy()
if(self.is_half==True):hidden=hidden.astype("float32")
hidden = hidden.squeeze(0).cpu().numpy()
if self.is_half == True:
hidden = hidden.astype("float32")
f0 = self.decode(hidden, thred=thred)
# torch.cuda.synchronize()
# t3=ttime()
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
return f0
def to_local_average_cents(self,salience, thred=0.05):
def to_local_average_cents(self, salience, thred=0.05):
# t0 = ttime()
center = np.argmax(salience, axis=1) # 帧长#index
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
@ -305,8 +395,8 @@ class RMVPE:
starts = center - 4
ends = center + 5
for idx in range(salience.shape[0]):
todo_salience.append(salience[:, starts[idx]:ends[idx]][idx])
todo_cents_mapping.append(self.cents_mapping[starts[idx]:ends[idx]])
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
# t2 = ttime()
todo_salience = np.array(todo_salience) # 帧长9
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长9
@ -321,8 +411,6 @@ class RMVPE:
return devided
# if __name__ == '__main__':
# audio, sampling_rate = sf.read("卢本伟语录~1.wav")
# if len(audio.shape) > 1:

View File

@ -1,4 +1,4 @@
import faiss,torch,traceback,parselmouth,numpy as np,torchcrepe,torch.nn as nn,pyworld
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
from fairseq import checkpoint_utils
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
@ -6,29 +6,32 @@ from lib.infer_pack.models import (
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
import os,sys
import os, sys
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
now_dir = os.getcwd()
sys.path.append(now_dir)
from config import Config
from multiprocessing import Manager as M
mm = M()
config = Config()
class RVC:
def __init__(
self, key, pth_path, index_path, index_rate, n_cpu,inp_q,opt_q,device
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
) -> None:
"""
初始化
"""
try:
global config
self.inp_q=inp_q
self.opt_q=opt_q
self.device=device
self.inp_q = inp_q
self.opt_q = opt_q
self.device = device
self.f0_up_key = key
self.time_step = 160 / 16000 * 1000
self.f0_min = 50
@ -81,7 +84,7 @@ class RVC:
self.net_g = self.net_g.half()
else:
self.net_g = self.net_g.float()
self.is_half=config.is_half
self.is_half = config.is_half
except:
print(traceback.format_exc())
@ -102,9 +105,11 @@ class RVC:
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
n_cpu = int(n_cpu)
if (method == "crepe"): return self.get_f0_crepe(x, f0_up_key)
if (method == "rmvpe"): return self.get_f0_rmvpe(x, f0_up_key)
if (method == "pm"):
if method == "crepe":
return self.get_f0_crepe(x, f0_up_key)
if method == "rmvpe":
return self.get_f0_rmvpe(x, f0_up_key)
if method == "pm":
p_len = x.shape[0] // 160
f0 = (
parselmouth.Sound(x, 16000)
@ -120,11 +125,13 @@ class RVC:
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
print(pad_size, p_len - len(f0) - pad_size)
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
f0 = np.pad(
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
if (n_cpu == 1):
if n_cpu == 1:
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
@ -142,23 +149,27 @@ class RVC:
res_f0 = mm.dict()
for idx in range(n_cpu):
tail = part_length * (idx + 1) + 320
if (idx == 0):
if idx == 0:
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
else:
self.inp_q.put((idx, x[part_length * idx - 320:tail], res_f0, n_cpu, ts))
while (1):
self.inp_q.put(
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
)
while 1:
res_ts = self.opt_q.get()
if (res_ts == ts):
if res_ts == ts:
break
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
for idx, f0 in enumerate(f0s):
if (idx == 0):
if idx == 0:
f0 = f0[:-3]
elif (idx != n_cpu - 1):
elif idx != n_cpu - 1:
f0 = f0[2:-3]
else:
f0 = f0[2:-1]
f0bak[part_length * idx // 160:part_length * idx // 160 + f0.shape[0]] = f0
f0bak[
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
] = f0
f0bak = signal.medfilt(f0bak, 3)
f0bak *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0bak)
@ -184,16 +195,28 @@ class RVC:
return self.get_f0_post(f0)
def get_f0_rmvpe(self, x, f0_up_key):
if (hasattr(self, "model_rmvpe") == False):
if hasattr(self, "model_rmvpe") == False:
from rmvpe import RMVPE
print("loading rmvpe model")
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=self.is_half, device=self.device)
self.model_rmvpe = RMVPE(
"rmvpe.pt", is_half=self.is_half, device=self.device
)
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
f0 *= pow(2, f0_up_key / 12)
return self.get_f0_post(f0)
def infer(self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method) -> np.ndarray:
def infer(
self,
feats: torch.Tensor,
indata: np.ndarray,
rate1,
rate2,
cache_pitch,
cache_pitchf,
f0method,
) -> np.ndarray:
feats = feats.view(1, -1)
if config.is_half:
feats = feats.half()
@ -209,13 +232,12 @@ class RVC:
"output_layer": 9 if self.version == "v1" else 12,
}
logits = self.model.extract_features(**inputs)
feats = self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
feats = (
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
)
t2 = ttime()
try:
if (
hasattr(self, "index")
and self.index_rate != 0
):
if hasattr(self, "index") and self.index_rate != 0:
leng_replace_head = int(rate1 * feats[0].shape[0])
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8)
@ -237,8 +259,10 @@ class RVC:
t3 = ttime()
if self.if_f0 == 1:
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0]:], pitch[:-1])
cache_pitchf[:] = np.append(cache_pitchf[pitchf[:-1].shape[0]:], pitchf[:-1])
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
cache_pitchf[:] = np.append(
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
)
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
else:
cache_pitch, cache_pitchf = None, None
@ -256,13 +280,17 @@ class RVC:
with torch.no_grad():
if self.if_f0 == 1:
infered_audio = (
self.net_g.infer(feats, p_len, cache_pitch, cache_pitchf, sid, rate2)[0][0, 0]
self.net_g.infer(
feats, p_len, cache_pitch, cache_pitchf, sid, rate2
)[0][0, 0]
.data.cpu()
.float()
)
else:
infered_audio = (
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0].data.cpu().float()
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
.data.cpu()
.float()
)
t5 = ttime()
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)

View File

@ -1,10 +1,11 @@
import numpy as np, parselmouth, torch, pdb,sys,os
import numpy as np, parselmouth, torch, pdb, sys, os
from time import time as ttime
import torch.nn.functional as F
import scipy.signal as signal
import pyworld, os, traceback, faiss, librosa, torchcrepe
from scipy import signal
from functools import lru_cache
now_dir = os.getcwd()
sys.path.append(now_dir)
@ -127,10 +128,13 @@ class VC(object):
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
elif f0_method == "rmvpe":
if(hasattr(self,"model_rmvpe")==False):
if hasattr(self, "model_rmvpe") == False:
from rmvpe import RMVPE
print("loading rmvpe model")
self.model_rmvpe = RMVPE("rmvpe.pt",is_half=self.is_half, device=self.device)
self.model_rmvpe = RMVPE(
"rmvpe.pt", is_half=self.is_half, device=self.device
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))