mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-04 03:38:58 +08:00
Add text splitting
This commit is contained in:
parent
9a0af2de15
commit
a18a2c6b94
@ -4,7 +4,6 @@ import gradio as gr
|
||||
from merged_ui.utils import generate_and_process_with_rvc, modified_get_vc
|
||||
from rvc_ui.initialization import config
|
||||
from rvc_ui.main import names, index_paths
|
||||
from spark.sparktts.utils.token_parser import LEVELS_MAP_UI
|
||||
|
||||
def build_merged_ui():
|
||||
"""
|
||||
@ -18,6 +17,7 @@ def build_merged_ui():
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("TTS-to-RVC Pipeline"):
|
||||
gr.Markdown("### Generate speech with Spark TTS and convert with RVC")
|
||||
gr.Markdown("*Note: For multi-sentence text, each sentence will be processed separately and then combined.*")
|
||||
|
||||
# TTS Generation Section
|
||||
with gr.Row():
|
||||
@ -36,7 +36,7 @@ def build_merged_ui():
|
||||
tts_text_input = gr.Textbox(
|
||||
label="Text to synthesize",
|
||||
lines=3,
|
||||
placeholder="Enter text for TTS"
|
||||
placeholder="Enter text for TTS. Multiple sentences will be processed individually."
|
||||
)
|
||||
prompt_text_input = gr.Textbox(
|
||||
label="Text of prompt speech (Optional)",
|
||||
@ -130,8 +130,8 @@ def build_merged_ui():
|
||||
generate_with_rvc_button = gr.Button("Generate with RVC", variant="primary")
|
||||
|
||||
with gr.Row():
|
||||
vc_output1 = gr.Textbox(label="Output information")
|
||||
vc_output2 = gr.Audio(label="Final converted audio")
|
||||
vc_output1 = gr.Textbox(label="Output information", lines=10)
|
||||
vc_output2 = gr.Audio(label="Final concatenated audio")
|
||||
|
||||
# Connect generate function to button
|
||||
generate_with_rvc_button.click(
|
||||
|
@ -1,5 +1,10 @@
|
||||
import os
|
||||
import shutil
|
||||
import re
|
||||
import numpy as np
|
||||
from time import sleep
|
||||
import soundfile as sf
|
||||
from pydub import AudioSegment
|
||||
|
||||
# Import modules from your packages
|
||||
from rvc_ui.initialization import vc
|
||||
@ -11,31 +16,45 @@ model_dir = "spark/pretrained_models/Spark-TTS-0.5B"
|
||||
device = 0
|
||||
spark_model = initialize_model(model_dir, device=device)
|
||||
|
||||
def generate_and_process_with_rvc(
|
||||
text, prompt_text, prompt_wav_upload, prompt_wav_record,
|
||||
def split_into_sentences(text):
|
||||
"""
|
||||
Split text into sentences using regular expressions.
|
||||
|
||||
Args:
|
||||
text (str): The input text to split
|
||||
|
||||
Returns:
|
||||
list: A list of sentences
|
||||
"""
|
||||
# Split on period, exclamation mark, or question mark followed by space or end of string
|
||||
sentences = re.split(r'(?<=[.!?])\s+|(?<=[.!?])$', text)
|
||||
# Remove any empty sentences
|
||||
sentences = [s.strip() for s in sentences if s.strip()]
|
||||
return sentences
|
||||
|
||||
def process_single_sentence(
|
||||
sentence_index, sentence, prompt_speech, prompt_text_clean,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
base_fragment_num
|
||||
):
|
||||
"""
|
||||
Handle combined TTS and RVC processing and save outputs to TEMP directories
|
||||
Process a single sentence through the TTS and RVC pipeline
|
||||
|
||||
Args:
|
||||
sentence_index (int): Index of the sentence in the original text
|
||||
sentence (str): The sentence text to process
|
||||
... (other parameters are the same as generate_and_process_with_rvc)
|
||||
|
||||
Returns:
|
||||
tuple: (spark_output_path, rvc_output_path, success, info_message)
|
||||
"""
|
||||
# Ensure TEMP directories exist
|
||||
os.makedirs("./TEMP/spark", exist_ok=True)
|
||||
os.makedirs("./TEMP/rvc", exist_ok=True)
|
||||
|
||||
# Get next fragment number
|
||||
fragment_num = 1
|
||||
while (os.path.exists(f"./TEMP/spark/fragment_{fragment_num}.wav") or
|
||||
os.path.exists(f"./TEMP/rvc/fragment_{fragment_num}.wav")):
|
||||
fragment_num += 1
|
||||
|
||||
# First generate TTS audio
|
||||
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
||||
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
|
||||
fragment_num = base_fragment_num + sentence_index
|
||||
|
||||
# Generate TTS audio for this sentence
|
||||
tts_path = run_tts(
|
||||
text,
|
||||
sentence,
|
||||
spark_model,
|
||||
prompt_text=prompt_text_clean,
|
||||
prompt_speech=prompt_speech
|
||||
@ -43,7 +62,7 @@ def generate_and_process_with_rvc(
|
||||
|
||||
# Make sure we have a TTS file to process
|
||||
if not tts_path or not os.path.exists(tts_path):
|
||||
return "Failed to generate TTS audio", None
|
||||
return None, None, False, f"Failed to generate TTS audio for sentence: {sentence}"
|
||||
|
||||
# Save Spark output to TEMP/spark
|
||||
spark_output_path = f"./TEMP/spark/fragment_{fragment_num}.wav"
|
||||
@ -70,7 +89,6 @@ def generate_and_process_with_rvc(
|
||||
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
|
||||
# Case 2: output_audio might be (sample_rate, audio_data)
|
||||
try:
|
||||
import soundfile as sf
|
||||
sf.write(rvc_output_path, output_audio[1], output_audio[0])
|
||||
rvc_saved = True
|
||||
except Exception as inner_e:
|
||||
@ -82,14 +100,120 @@ def generate_and_process_with_rvc(
|
||||
except Exception as e:
|
||||
output_info += f"\nError saving RVC output: {str(e)}"
|
||||
|
||||
# Add file paths to output info
|
||||
output_info += f"\nSpark output saved to: {spark_output_path}"
|
||||
# Prepare info message
|
||||
info_message = f"Sentence {sentence_index+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
||||
info_message += f" - Spark output: {spark_output_path}\n"
|
||||
if rvc_saved:
|
||||
output_info += f"\nRVC output saved to: {rvc_output_path}"
|
||||
info_message += f" - RVC output: {rvc_output_path}"
|
||||
else:
|
||||
output_info += f"\nCould not automatically save RVC output to {rvc_output_path}"
|
||||
info_message += f" - Could not save RVC output to {rvc_output_path}"
|
||||
|
||||
return output_info, output_audio
|
||||
return spark_output_path, rvc_output_path, rvc_saved, info_message
|
||||
|
||||
def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
|
||||
"""
|
||||
Concatenate multiple audio files into a single file
|
||||
|
||||
Args:
|
||||
file_paths (list): List of paths to audio files
|
||||
output_path (str): Path to save the concatenated audio
|
||||
sample_rate (int): Sample rate for the output file
|
||||
|
||||
Returns:
|
||||
bool: True if concatenation was successful, False otherwise
|
||||
"""
|
||||
try:
|
||||
# Use pydub to concatenate audio files
|
||||
combined = AudioSegment.empty()
|
||||
for file_path in file_paths:
|
||||
segment = AudioSegment.from_file(file_path)
|
||||
combined += segment
|
||||
|
||||
# Export the combined audio
|
||||
combined.export(output_path, format="wav")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(f"Error concatenating audio files: {str(e)}")
|
||||
|
||||
# Fallback method using soundfile
|
||||
try:
|
||||
all_audio = []
|
||||
for file_path in file_paths:
|
||||
data, sr = sf.read(file_path)
|
||||
# Convert to mono if stereo
|
||||
if len(data.shape) > 1 and data.shape[1] > 1:
|
||||
data = data.mean(axis=1)
|
||||
all_audio.append(data)
|
||||
|
||||
# Concatenate all audio data
|
||||
concatenated = np.concatenate(all_audio)
|
||||
sf.write(output_path, concatenated, sample_rate)
|
||||
return True
|
||||
except Exception as e2:
|
||||
print(f"Fallback concatenation failed: {str(e2)}")
|
||||
return False
|
||||
|
||||
def generate_and_process_with_rvc(
|
||||
text, prompt_text, prompt_wav_upload, prompt_wav_record,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect
|
||||
):
|
||||
"""
|
||||
Handle combined TTS and RVC processing for multiple sentences and save outputs to TEMP directories
|
||||
"""
|
||||
# Ensure TEMP directories exist
|
||||
os.makedirs("./TEMP/spark", exist_ok=True)
|
||||
os.makedirs("./TEMP/rvc", exist_ok=True)
|
||||
|
||||
# Split text into sentences
|
||||
sentences = split_into_sentences(text)
|
||||
if not sentences:
|
||||
return "No valid text to process.", None
|
||||
|
||||
# Get next base fragment number
|
||||
base_fragment_num = 1
|
||||
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
|
||||
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
|
||||
for i in range(len(sentences))):
|
||||
base_fragment_num += 1
|
||||
|
||||
# Process reference speech
|
||||
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
||||
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
|
||||
|
||||
# Process each sentence
|
||||
results = []
|
||||
info_messages = [f"Processing {len(sentences)} sentences..."]
|
||||
|
||||
for i, sentence in enumerate(sentences):
|
||||
spark_path, rvc_path, success, info = process_single_sentence(
|
||||
i, sentence, prompt_speech, prompt_text_clean,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
base_fragment_num
|
||||
)
|
||||
|
||||
info_messages.append(info)
|
||||
if success and rvc_path:
|
||||
results.append(rvc_path)
|
||||
|
||||
# If no sentences were successfully processed
|
||||
if not results:
|
||||
return "\n".join(info_messages) + "\n\nNo sentences were successfully processed.", None
|
||||
|
||||
# Concatenate all successful RVC fragments
|
||||
final_output_path = f"./TEMP/final_output_{base_fragment_num}.wav"
|
||||
concatenation_success = concatenate_audio_files(results, final_output_path)
|
||||
|
||||
if concatenation_success:
|
||||
info_messages.append(f"\nAll fragments concatenated successfully to: {final_output_path}")
|
||||
return "\n".join(info_messages), final_output_path
|
||||
else:
|
||||
# If concatenation failed but we have at least one successful fragment, return the first one
|
||||
info_messages.append(f"\nFailed to concatenate fragments. Returning first successful fragment.")
|
||||
return "\n".join(info_messages), results[0]
|
||||
|
||||
def modified_get_vc(sid0_value, protect0_value, file_index2_component):
|
||||
"""
|
||||
@ -101,4 +225,4 @@ def modified_get_vc(sid0_value, protect0_value, file_index2_component):
|
||||
if isinstance(outputs, tuple) and len(outputs) >= 3:
|
||||
return outputs[0], outputs[1], outputs[3]
|
||||
|
||||
return 0, protect0_value, file_index2_component.choices[0] if file_index2_component.choices else ""
|
||||
return 0, protect0_value, file_index2_component.choices[0] if file_index2_component.choices else ""
|
||||
|
Loading…
x
Reference in New Issue
Block a user