Streaming noise reduction and other optimizations for real-time gui (#1188)

* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* streaming noise reduction and other optimizations

* streaming noise reduction and other optimizations
This commit is contained in:
yxlllc 2023-09-04 17:01:11 +08:00 committed by GitHub
parent b09b6ad05c
commit a669fee786
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 62 additions and 112 deletions

161
gui_v1.py
View File

@ -5,7 +5,7 @@ from dotenv import load_dotenv
load_dotenv() load_dotenv()
os.environ["OMP_NUM_THREADS"] = "2" os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin": if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
@ -481,49 +481,21 @@ if __name__ == "__main__":
self.rvc if hasattr(self, "rvc") else None self.rvc if hasattr(self, "rvc") else None
) )
self.config.samplerate = self.rvc.tgt_sr self.config.samplerate = self.rvc.tgt_sr
self.config.crossfade_time = min(
self.config.crossfade_time, self.config.block_time
)
self.zc = self.rvc.tgt_sr // 100 self.zc = self.rvc.tgt_sr // 100
self.block_frame = int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc self.block_frame = int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc
self.block_frame_16k = 160 * self.block_frame // self.zc self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = int( self.crossfade_frame = int(np.round(self.config.crossfade_time * self.config.samplerate / self.zc)) * self.zc
self.config.crossfade_time * self.config.samplerate self.sola_search_frame = self.zc
) self.extra_frame = int(np.round(self.config.extra_time * self.config.samplerate / self.zc)) * self.zc
self.sola_search_frame = int(0.01 * self.config.samplerate) self.input_wav: torch.Tensor = torch.zeros(
self.extra_frame = int(self.config.extra_time * self.config.samplerate)
self.input_wav: np.ndarray = np.zeros(
int(
np.ceil(
(
self.extra_frame self.extra_frame
+ self.crossfade_frame + self.crossfade_frame
+ self.sola_search_frame + self.sola_search_frame
+ self.block_frame + self.block_frame,
)
/ self.zc
)
* self.zc
),
dtype="float32",
)
self.input_wav_res: torch.Tensor= torch.zeros(160 * len(self.input_wav) // self.zc, device=device,dtype=torch.float32)
self.output_wav_cache: torch.Tensor = torch.zeros(
int(
np.ceil(
(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame
)
/ self.zc
)
* self.zc
),
device=device, device=device,
dtype=torch.float32, dtype=torch.float32,
) )
self.input_wav_res: torch.Tensor= torch.zeros(160 * self.input_wav.shape[0] // self.zc, device=device,dtype=torch.float32)
self.pitch: np.ndarray = np.zeros( self.pitch: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc, self.input_wav.shape[0] // self.zc,
dtype="int32", dtype="int32",
@ -532,12 +504,13 @@ if __name__ == "__main__":
self.input_wav.shape[0] // self.zc, self.input_wav.shape[0] // self.zc,
dtype="float64", dtype="float64",
) )
self.output_wav: torch.Tensor = torch.zeros(
self.block_frame, device=device, dtype=torch.float32
)
self.sola_buffer: torch.Tensor = torch.zeros( self.sola_buffer: torch.Tensor = torch.zeros(
self.crossfade_frame, device=device, dtype=torch.float32 self.crossfade_frame, device=device, dtype=torch.float32
) )
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
self.output_buffer: torch.Tensor = self.input_wav.clone()
self.res_buffer: torch.Tensor = torch.zeros(2 * self.zc, device=device,dtype=torch.float32)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window: torch.Tensor = ( self.fade_in_window: torch.Tensor = (
torch.sin( torch.sin(
0.5 0.5
@ -556,8 +529,7 @@ if __name__ == "__main__":
self.resampler = tat.Resample( self.resampler = tat.Resample(
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
).to(device) ).to(device)
self.input_tg = TorchGate(sr=16000, nonstationary=True, n_fft=640).to(device) self.tg = TorchGate(sr=self.config.samplerate, n_fft=4*self.zc, prop_decrease=0.9).to(device)
self.output_tg = TorchGate(sr=self.config.samplerate, nonstationary=True, n_fft=4*self.zc).to(device)
thread_vc = threading.Thread(target=self.soundinput) thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start() thread_vc.start()
@ -586,114 +558,91 @@ if __name__ == "__main__":
""" """
start_time = time.perf_counter() start_time = time.perf_counter()
indata = librosa.to_mono(indata.T) indata = librosa.to_mono(indata.T)
frame_length = 2048
hop_length = 1024
rms = librosa.feature.rms(
y=indata, frame_length=frame_length, hop_length=hop_length
)
if self.config.threhold > -60: if self.config.threhold > -60:
rms = librosa.feature.rms(
y=indata, frame_length=4*self.zc, hop_length=self.zc
)
db_threhold = ( db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
) )
for i in range(db_threhold.shape[0]): for i in range(db_threhold.shape[0]):
if db_threhold[i]: if db_threhold[i]:
indata[i * hop_length : (i + 1) * hop_length] = 0 indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :] self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-self.block_frame: ] = indata self.input_wav[-self.block_frame: ] = torch.from_numpy(indata).to(device)
# infer
inp = torch.from_numpy(self.input_wav[-self.block_frame-2*self.zc :]).to(device)
self.input_wav_res[ : -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone() self.input_wav_res[ : -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
self.input_wav_res[-self.block_frame_16k-160 :] = self.resampler(inp)[160 :] # input noise reduction and resampling
if self.config.I_noise_reduce: if self.config.I_noise_reduce:
self.input_wav_res[-self.block_frame_16k-320 :] = self.input_tg(self.input_wav_res[None, -self.block_frame_16k-800 :])[0, 480 : ] input_wav = self.input_wav[-self.crossfade_frame -self.block_frame-2*self.zc: ]
rate = ( input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2*self.zc:]
self.crossfade_frame + self.sola_search_frame + self.block_frame input_wav[: self.crossfade_frame] *= self.fade_in_window
) / ( input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
self.extra_frame self.nr_buffer[:] = input_wav[-self.crossfade_frame: ]
+ self.crossfade_frame input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
+ self.sola_search_frame self.res_buffer[:] = input_wav[-2*self.zc: ]
+ self.block_frame self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(input_wav)[160: ]
) else:
self.input_wav_res[-self.block_frame_16k-160: ] = self.resampler(self.input_wav[-self.block_frame-2*self.zc: ])[160: ]
# infer
f0_extractor_frame = self.block_frame_16k + 800 f0_extractor_frame = self.block_frame_16k + 800
if self.config.f0method == 'rmvpe': if self.config.f0method == 'rmvpe':
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1)
res2 = self.rvc.infer( infer_wav = self.rvc.infer(
self.input_wav_res, self.input_wav_res,
self.input_wav_res[-f0_extractor_frame :].cpu().numpy(), self.input_wav_res[-f0_extractor_frame :].cpu().numpy(),
self.block_frame_16k, self.block_frame_16k,
rate, self.valid_rate,
self.pitch, self.pitch,
self.pitchf, self.pitchf,
self.config.f0method, self.config.f0method,
) )
self.output_wav_cache[-res2.shape[0] :] = res2 infer_wav = infer_wav[
infer_wav = self.output_wav_cache[
-self.crossfade_frame - self.sola_search_frame - self.block_frame : -self.crossfade_frame - self.sola_search_frame - self.block_frame :
] ]
# output noise reduction
if self.config.O_noise_reduce: if self.config.O_noise_reduce:
infer_wav = self.output_tg(infer_wav.unsqueeze(0)).squeeze(0) self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame: ] = infer_wav[-self.block_frame:]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
# volume envelop mixing
if self.config.rms_mix_rate < 1: if self.config.rms_mix_rate < 1:
rms1 = librosa.feature.rms( rms1 = librosa.feature.rms(
y=self.input_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :], y=self.input_wav_res[-160*infer_wav.shape[0]//self.zc :].cpu().numpy(),
frame_length=frame_length, frame_length=640,
hop_length=hop_length hop_length=160,
) )
rms1 = torch.from_numpy(rms1).to(device) rms1 = torch.from_numpy(rms1).to(device)
rms1 = F.interpolate( rms1 = F.interpolate(
rms1.unsqueeze(0), size=infer_wav.shape[0], mode="linear" rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
).squeeze() )[0,0,:-1]
rms2 = librosa.feature.rms( rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(), frame_length=frame_length, hop_length=hop_length y=infer_wav[:].cpu().numpy(), frame_length=4*self.zc, hop_length=self.zc
) )
rms2 = torch.from_numpy(rms2).to(device) rms2 = torch.from_numpy(rms2).to(device)
rms2 = F.interpolate( rms2 = F.interpolate(
rms2.unsqueeze(0), size=infer_wav.shape[0], mode="linear" rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear",align_corners=True,
).squeeze() )[0,0,:-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate)) infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate))
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
cor_nom = F.conv1d( conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame], cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
self.sola_buffer[None, None, :],
)
cor_den = torch.sqrt( cor_den = torch.sqrt(
F.conv1d( F.conv1d(conv_input ** 2, torch.ones(1, 1, self.crossfade_frame, device=device)) + 1e-8)
infer_wav[
None, None, : self.crossfade_frame + self.sola_search_frame
]
** 2,
torch.ones(1, 1, self.crossfade_frame, device=device),
)
+ 1e-8
)
if sys.platform == "darwin": if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item() sola_offset = sola_offset.item()
else: else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.debug("sola_offset = %d", int(sola_offset)) logger.debug("sola_offset = %d", int(sola_offset))
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame] infer_wav = infer_wav[sola_offset: sola_offset + self.block_frame + self.crossfade_frame]
self.output_wav[: self.crossfade_frame] *= self.fade_in_window infer_wav[: self.crossfade_frame] *= self.fade_in_window
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:] infer_wav[: self.crossfade_frame] += self.sola_buffer *self.fade_out_window
# crossfade self.sola_buffer[:] = infer_wav[-self.crossfade_frame:]
if sola_offset < self.sola_search_frame:
self.sola_buffer[:] = (
infer_wav[
-self.sola_search_frame
- self.crossfade_frame
+ sola_offset : -self.sola_search_frame
+ sola_offset
]
* self.fade_out_window
)
else:
self.sola_buffer[:] = (
infer_wav[-self.crossfade_frame :] * self.fade_out_window
)
if sys.platform == "darwin": if sys.platform == "darwin":
outdata[:] = self.output_wav[:].cpu().numpy()[:, np.newaxis] outdata[:] = infer_wav[:-self.crossfade_frame].cpu().numpy()[:, np.newaxis]
else: else:
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy() outdata[:] = infer_wav[:-self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000)) self.window["infer_time"].update(int(total_time * 1000))
logger.info("Infer time: %.2f", total_time) logger.info("Infer time: %.2f", total_time)

View File

@ -91,7 +91,7 @@ class RVC:
suffix="", suffix="",
) )
hubert_model = models[0] hubert_model = models[0]
hubert_model = hubert_model.to(config.device) hubert_model = hubert_model.to(device)
if config.is_half: if config.is_half:
hubert_model = hubert_model.half() hubert_model = hubert_model.half()
else: else:
@ -309,6 +309,7 @@ class RVC:
feats = ( feats = (
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
) )
feats = F.pad(feats, (0, 0, 1, 0))
t2 = ttime() t2 = ttime()
try: try:
if hasattr(self, "index") and self.index_rate != 0: if hasattr(self, "index") and self.index_rate != 0:
@ -360,13 +361,13 @@ class RVC:
self.net_g.infer( self.net_g.infer(
feats, p_len, cache_pitch, cache_pitchf, sid, rate feats, p_len, cache_pitch, cache_pitchf, sid, rate
)[0][0, 0] )[0][0, 0]
.data.cpu() .data
.float() .float()
) )
else: else:
infered_audio = ( infered_audio = (
self.net_g.infer(feats, p_len, sid, rate)[0][0, 0] self.net_g.infer(feats, p_len, sid, rate)[0][0, 0]
.data.cpu() .data
.float() .float()
) )
t5 = ttime() t5 = ttime()