mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 20:45:04 +08:00
Add files via upload
This commit is contained in:
parent
1279e1dcc4
commit
c69cecbc41
@ -631,12 +631,17 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
|||||||
o = self.dec(z_slice, pitchf, g=g)
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
if(rate):
|
||||||
|
head=int(z_p.shape[2]*rate)
|
||||||
|
z_p=z_p[:,:,-head:]
|
||||||
|
x_mask=x_mask[:,:,-head:]
|
||||||
|
nsff0=nsff0[:,-head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
o = self.dec(z * x_mask, nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
@ -742,12 +747,17 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
|
|||||||
o = self.dec(z_slice, pitchf, g=g)
|
o = self.dec(z_slice, pitchf, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
if(rate):
|
||||||
|
head=int(z_p.shape[2]*rate)
|
||||||
|
z_p=z_p[:,:,-head:]
|
||||||
|
x_mask=x_mask[:,:,-head:]
|
||||||
|
nsff0=nsff0[:,-head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
o = self.dec(z * x_mask, nsff0, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
@ -844,12 +854,16 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
|||||||
o = self.dec(z_slice, g=g)
|
o = self.dec(z_slice, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
def infer(self, phone, phone_lengths, sid, rate=None):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
if(rate):
|
||||||
|
head=int(z_p.shape[2]*rate)
|
||||||
|
z_p=z_p[:,:,-head:]
|
||||||
|
x_mask=x_mask[:,:,-head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
o = self.dec(z * x_mask, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
@ -946,12 +960,16 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
|||||||
o = self.dec(z_slice, g=g)
|
o = self.dec(z_slice, g=g)
|
||||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
def infer(self, phone, phone_lengths, sid, rate=None):
|
||||||
g = self.emb_g(sid).unsqueeze(-1)
|
g = self.emb_g(sid).unsqueeze(-1)
|
||||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||||
|
if(rate):
|
||||||
|
head=int(z_p.shape[2]*rate)
|
||||||
|
z_p=z_p[:,:,-head:]
|
||||||
|
x_mask=x_mask[:,:,-head:]
|
||||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
o = self.dec(z * x_mask, g=g)
|
||||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user