mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 02:55:05 +08:00
Reformat and rewrite _get_name_params (#57)
* Reformat
* rewrite _get_name_params
* Add workflow for automatic formatting
* Revert "Add workflow for automatic formatting"
This reverts commit 9111c5dbc1
.
* revert Retrieval_based_Voice_Conversion_WebUI.ipynb
---------
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
parent
aaa893c4b1
commit
c8261b2ccc
73
config.py
73
config.py
@ -1,13 +1,13 @@
|
||||
########################硬件参数########################
|
||||
|
||||
#填写cuda:x, cpu 或 mps, x指代第几张卡,只支持 N卡 / Apple Silicon 加速
|
||||
device = "cuda:0"
|
||||
# 填写cuda:x, cpu 或 mps, x指代第几张卡,只支持 N卡 / Apple Silicon 加速
|
||||
device = "cuda:0"
|
||||
|
||||
#9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速
|
||||
is_half = True
|
||||
# 9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速
|
||||
is_half = True
|
||||
|
||||
#默认0用上所有线程,写数字限制CPU资源使用
|
||||
n_cpu = 0
|
||||
# 默认0用上所有线程,写数字限制CPU资源使用
|
||||
n_cpu = 0
|
||||
|
||||
########################硬件参数########################
|
||||
|
||||
@ -16,31 +16,38 @@ n_cpu = 0
|
||||
|
||||
########################命令行参数########################
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
||||
parser.add_argument("--pycmd", type=str, default="python", help="Python command")
|
||||
parser.add_argument("--colab", action='store_true', help="Launch in colab")
|
||||
parser.add_argument("--noparallel", action='store_true', help="Disable parallel processing")
|
||||
parser.add_argument("--noautoopen", action='store_true', help="Do not open in browser automatically")
|
||||
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
||||
parser.add_argument(
|
||||
"--noparallel", action="store_true", help="Disable parallel processing"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--noautoopen", action="store_true", help="Do not open in browser automatically"
|
||||
)
|
||||
cmd_opts = parser.parse_args()
|
||||
|
||||
python_cmd=cmd_opts.pycmd
|
||||
listen_port=cmd_opts.port
|
||||
iscolab=cmd_opts.colab
|
||||
noparallel=cmd_opts.noparallel
|
||||
noautoopen=cmd_opts.noautoopen
|
||||
python_cmd = cmd_opts.pycmd
|
||||
listen_port = cmd_opts.port
|
||||
iscolab = cmd_opts.colab
|
||||
noparallel = cmd_opts.noparallel
|
||||
noautoopen = cmd_opts.noautoopen
|
||||
########################命令行参数########################
|
||||
|
||||
import sys
|
||||
import torch
|
||||
|
||||
|
||||
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
||||
# check `getattr` and try it for compatibility
|
||||
def has_mps() -> bool:
|
||||
if sys.platform != "darwin":
|
||||
return False
|
||||
else:
|
||||
if not getattr(torch, 'has_mps', False): return False
|
||||
if not getattr(torch, "has_mps", False):
|
||||
return False
|
||||
try:
|
||||
torch.zeros(1).to(torch.device("mps"))
|
||||
return True
|
||||
@ -48,32 +55,34 @@ def has_mps() -> bool:
|
||||
return False
|
||||
|
||||
|
||||
if(not torch.cuda.is_available()):
|
||||
if not torch.cuda.is_available():
|
||||
if has_mps():
|
||||
print("没有发现支持的N卡, 使用MPS进行推理")
|
||||
device = "mps"
|
||||
device = "mps"
|
||||
else:
|
||||
print("没有发现支持的N卡, 使用CPU进行推理")
|
||||
device = "cpu"
|
||||
device = "cpu"
|
||||
is_half = False
|
||||
|
||||
if(device not in ["cpu", "mps"]):
|
||||
if device not in ["cpu", "mps"]:
|
||||
gpu_name = torch.cuda.get_device_name(int(device.split(":")[-1]))
|
||||
if("16" in gpu_name or "MX" in gpu_name):
|
||||
if "16" in gpu_name or "MX" in gpu_name:
|
||||
print("16系显卡/MX系显卡强制单精度")
|
||||
is_half = False
|
||||
|
||||
from multiprocessing import cpu_count
|
||||
if(n_cpu==0): n_cpu=cpu_count()
|
||||
if(is_half):
|
||||
#6G显存配置
|
||||
x_pad = 3
|
||||
x_query = 10
|
||||
x_center = 60
|
||||
x_max = 65
|
||||
|
||||
if n_cpu == 0:
|
||||
n_cpu = cpu_count()
|
||||
if is_half:
|
||||
# 6G显存配置
|
||||
x_pad = 3
|
||||
x_query = 10
|
||||
x_center = 60
|
||||
x_max = 65
|
||||
else:
|
||||
#5G显存配置
|
||||
x_pad = 1
|
||||
x_query = 6
|
||||
x_center = 38
|
||||
x_max = 41
|
||||
# 5G显存配置
|
||||
x_pad = 1
|
||||
x_query = 6
|
||||
x_center = 38
|
||||
x_max = 41
|
||||
|
@ -5,40 +5,43 @@ person = "Shiroha/shiroha.pth"
|
||||
exported_path = "model.onnx"
|
||||
|
||||
|
||||
|
||||
cpt = torch.load(person, map_location="cpu")
|
||||
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||
print(*cpt["config"])
|
||||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
|
||||
net_g.load_state_dict(cpt["weight"], strict=False)
|
||||
|
||||
test_phone = torch.rand(1, 200, 256)
|
||||
test_phone_lengths = torch.tensor([200]).long()
|
||||
test_pitch = torch.randint(size=(1 ,200),low=5,high=255)
|
||||
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
|
||||
test_pitchf = torch.rand(1, 200)
|
||||
test_ds = torch.LongTensor([0])
|
||||
test_rnd = torch.rand(1, 192, 200)
|
||||
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
||||
output_names = ["audio", ]
|
||||
device="cpu"
|
||||
torch.onnx.export(net_g,
|
||||
(
|
||||
test_phone.to(device),
|
||||
test_phone_lengths.to(device),
|
||||
test_pitch.to(device),
|
||||
test_pitchf.to(device),
|
||||
test_ds.to(device),
|
||||
test_rnd.to(device)
|
||||
),
|
||||
exported_path,
|
||||
dynamic_axes={
|
||||
"phone": [1],
|
||||
"pitch": [1],
|
||||
"pitchf": [1],
|
||||
"rnd": [2],
|
||||
},
|
||||
do_constant_folding=False,
|
||||
opset_version=16,
|
||||
verbose=False,
|
||||
input_names=input_names,
|
||||
output_names=output_names)
|
||||
output_names = [
|
||||
"audio",
|
||||
]
|
||||
device = "cpu"
|
||||
torch.onnx.export(
|
||||
net_g,
|
||||
(
|
||||
test_phone.to(device),
|
||||
test_phone_lengths.to(device),
|
||||
test_pitch.to(device),
|
||||
test_pitchf.to(device),
|
||||
test_ds.to(device),
|
||||
test_rnd.to(device),
|
||||
),
|
||||
exported_path,
|
||||
dynamic_axes={
|
||||
"phone": [1],
|
||||
"pitch": [1],
|
||||
"pitchf": [1],
|
||||
"rnd": [2],
|
||||
},
|
||||
do_constant_folding=False,
|
||||
opset_version=16,
|
||||
verbose=False,
|
||||
input_names=input_names,
|
||||
output_names=output_names,
|
||||
)
|
||||
|
@ -1,21 +1,26 @@
|
||||
import os,traceback,sys,parselmouth
|
||||
import os, traceback, sys, parselmouth
|
||||
import librosa
|
||||
import pyworld
|
||||
from scipy.io import wavfile
|
||||
import numpy as np,logging
|
||||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||||
import numpy as np, logging
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
from multiprocessing import Process
|
||||
|
||||
exp_dir = sys.argv[1]
|
||||
f = open("%s/extract_f0_feature.log"%exp_dir, "a+")
|
||||
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
||||
|
||||
|
||||
def printt(strr):
|
||||
print(strr)
|
||||
f.write("%s\n" % strr)
|
||||
f.flush()
|
||||
|
||||
|
||||
n_p = int(sys.argv[2])
|
||||
f0method = sys.argv[3]
|
||||
|
||||
|
||||
class FeatureInput(object):
|
||||
def __init__(self, samplerate=16000, hop_size=160):
|
||||
self.fs = samplerate
|
||||
@ -27,21 +32,30 @@ class FeatureInput(object):
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
|
||||
def compute_f0(self, path,f0_method):
|
||||
def compute_f0(self, path, f0_method):
|
||||
x, sr = librosa.load(path, self.fs)
|
||||
p_len=x.shape[0]//self.hop
|
||||
p_len = x.shape[0] // self.hop
|
||||
assert sr == self.fs
|
||||
if(f0_method=="pm"):
|
||||
if f0_method == "pm":
|
||||
time_step = 160 / 16000 * 1000
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0 = parselmouth.Sound(x, sr).to_pitch_ac(
|
||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
||||
pad_size=(p_len - len(f0) + 1) // 2
|
||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||
elif(f0_method=="harvest"):
|
||||
f0 = (
|
||||
parselmouth.Sound(x, sr)
|
||||
.to_pitch_ac(
|
||||
time_step=time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=f0_min,
|
||||
pitch_ceiling=f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(
|
||||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||
)
|
||||
elif f0_method == "harvest":
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=sr,
|
||||
@ -50,7 +64,7 @@ class FeatureInput(object):
|
||||
frame_period=1000 * self.hop / sr,
|
||||
)
|
||||
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs)
|
||||
elif(f0_method=="dio"):
|
||||
elif f0_method == "dio":
|
||||
f0, t = pyworld.dio(
|
||||
x.astype(np.double),
|
||||
fs=sr,
|
||||
@ -77,45 +91,67 @@ class FeatureInput(object):
|
||||
)
|
||||
return f0_coarse
|
||||
|
||||
def go(self,paths,f0_method):
|
||||
if (len(paths) == 0): printt("no-f0-todo")
|
||||
def go(self, paths, f0_method):
|
||||
if len(paths) == 0:
|
||||
printt("no-f0-todo")
|
||||
else:
|
||||
printt("todo-f0-%s"%len(paths))
|
||||
n=max(len(paths)//5,1)#每个进程最多打印5条
|
||||
for idx,(inp_path,opt_path1,opt_path2) in enumerate(paths):
|
||||
printt("todo-f0-%s" % len(paths))
|
||||
n = max(len(paths) // 5, 1) # 每个进程最多打印5条
|
||||
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
|
||||
try:
|
||||
if(idx%n==0):printt("f0ing,now-%s,all-%s,-%s"%(idx,len(paths),inp_path))
|
||||
if(os.path.exists(opt_path1+".npy")==True and os.path.exists(opt_path2+".npy")==True):continue
|
||||
featur_pit = self.compute_f0(inp_path,f0_method)
|
||||
np.save(opt_path2,featur_pit,allow_pickle=False,)#nsf
|
||||
if idx % n == 0:
|
||||
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path))
|
||||
if (
|
||||
os.path.exists(opt_path1 + ".npy") == True
|
||||
and os.path.exists(opt_path2 + ".npy") == True
|
||||
):
|
||||
continue
|
||||
featur_pit = self.compute_f0(inp_path, f0_method)
|
||||
np.save(
|
||||
opt_path2,
|
||||
featur_pit,
|
||||
allow_pickle=False,
|
||||
) # nsf
|
||||
coarse_pit = self.coarse_f0(featur_pit)
|
||||
np.save(opt_path1,coarse_pit,allow_pickle=False,)#ori
|
||||
np.save(
|
||||
opt_path1,
|
||||
coarse_pit,
|
||||
allow_pickle=False,
|
||||
) # ori
|
||||
except:
|
||||
printt("f0fail-%s-%s-%s" % (idx, inp_path,traceback.format_exc()))
|
||||
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc()))
|
||||
|
||||
if __name__=='__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
||||
# n_p=16
|
||||
# f = open("%s/log_extract_f0.log"%exp_dir, "w")
|
||||
printt(sys.argv)
|
||||
featureInput = FeatureInput()
|
||||
paths=[]
|
||||
inp_root= "%s/1_16k_wavs"%(exp_dir)
|
||||
opt_root1="%s/2a_f0"%(exp_dir)
|
||||
opt_root2="%s/2b-f0nsf"%(exp_dir)
|
||||
paths = []
|
||||
inp_root = "%s/1_16k_wavs" % (exp_dir)
|
||||
opt_root1 = "%s/2a_f0" % (exp_dir)
|
||||
opt_root2 = "%s/2b-f0nsf" % (exp_dir)
|
||||
|
||||
os.makedirs(opt_root1,exist_ok=True)
|
||||
os.makedirs(opt_root2,exist_ok=True)
|
||||
os.makedirs(opt_root1, exist_ok=True)
|
||||
os.makedirs(opt_root2, exist_ok=True)
|
||||
for name in sorted(list(os.listdir(inp_root))):
|
||||
inp_path="%s/%s"%(inp_root,name)
|
||||
if ("spec" in inp_path): continue
|
||||
opt_path1="%s/%s"%(opt_root1,name)
|
||||
opt_path2="%s/%s"%(opt_root2,name)
|
||||
paths.append([inp_path,opt_path1,opt_path2])
|
||||
inp_path = "%s/%s" % (inp_root, name)
|
||||
if "spec" in inp_path:
|
||||
continue
|
||||
opt_path1 = "%s/%s" % (opt_root1, name)
|
||||
opt_path2 = "%s/%s" % (opt_root2, name)
|
||||
paths.append([inp_path, opt_path1, opt_path2])
|
||||
|
||||
ps=[]
|
||||
ps = []
|
||||
for i in range(n_p):
|
||||
p=Process(target=featureInput.go,args=(paths[i::n_p],f0method,))
|
||||
p = Process(
|
||||
target=featureInput.go,
|
||||
args=(
|
||||
paths[i::n_p],
|
||||
f0method,
|
||||
),
|
||||
)
|
||||
p.start()
|
||||
ps.append(p)
|
||||
for p in ps:
|
||||
|
@ -1,33 +1,41 @@
|
||||
import os,sys,traceback
|
||||
import os, sys, traceback
|
||||
|
||||
# device=sys.argv[1]
|
||||
n_part=int(sys.argv[2])
|
||||
i_part=int(sys.argv[3])
|
||||
n_part = int(sys.argv[2])
|
||||
i_part = int(sys.argv[3])
|
||||
if len(sys.argv) == 5:
|
||||
exp_dir=sys.argv[4]
|
||||
exp_dir = sys.argv[4]
|
||||
else:
|
||||
i_gpu=sys.argv[4]
|
||||
exp_dir=sys.argv[5]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
||||
i_gpu = sys.argv[4]
|
||||
exp_dir = sys.argv[5]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import soundfile as sf
|
||||
import numpy as np
|
||||
from fairseq import checkpoint_utils
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
f = open("%s/extract_f0_feature.log"%exp_dir, "a+")
|
||||
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
||||
|
||||
|
||||
def printt(strr):
|
||||
print(strr)
|
||||
f.write("%s\n" % strr)
|
||||
f.flush()
|
||||
|
||||
|
||||
printt(sys.argv)
|
||||
model_path = "hubert_base.pt"
|
||||
|
||||
printt(exp_dir)
|
||||
wavPath = "%s/1_16k_wavs"%exp_dir
|
||||
outPath = "%s/3_feature256"%exp_dir
|
||||
os.makedirs(outPath,exist_ok=True)
|
||||
wavPath = "%s/1_16k_wavs" % exp_dir
|
||||
outPath = "%s/3_feature256" % exp_dir
|
||||
os.makedirs(outPath, exist_ok=True)
|
||||
|
||||
|
||||
# wave must be 16k, hop_size=320
|
||||
def readwave(wav_path, normalize=False):
|
||||
wav, sr = sf.read(wav_path)
|
||||
@ -41,6 +49,8 @@ def readwave(wav_path, normalize=False):
|
||||
feats = F.layer_norm(feats, feats.shape)
|
||||
feats = feats.view(1, -1)
|
||||
return feats
|
||||
|
||||
|
||||
# HuBERT model
|
||||
printt("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
@ -49,27 +59,32 @@ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
)
|
||||
model = models[0]
|
||||
model = model.to(device)
|
||||
printt("move model to %s"%device)
|
||||
if device != "cpu": model = model.half()
|
||||
printt("move model to %s" % device)
|
||||
if device != "cpu":
|
||||
model = model.half()
|
||||
model.eval()
|
||||
|
||||
todo=sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
||||
n = max(1,len(todo) // 10) # 最多打印十条
|
||||
if(len(todo)==0):printt("no-feature-todo")
|
||||
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
||||
n = max(1, len(todo) // 10) # 最多打印十条
|
||||
if len(todo) == 0:
|
||||
printt("no-feature-todo")
|
||||
else:
|
||||
printt("all-feature-%s"%len(todo))
|
||||
for idx,file in enumerate(todo):
|
||||
printt("all-feature-%s" % len(todo))
|
||||
for idx, file in enumerate(todo):
|
||||
try:
|
||||
if file.endswith(".wav"):
|
||||
wav_path = "%s/%s"%(wavPath,file)
|
||||
out_path = "%s/%s"%(outPath,file.replace("wav","npy"))
|
||||
wav_path = "%s/%s" % (wavPath, file)
|
||||
out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))
|
||||
|
||||
if(os.path.exists(out_path)):continue
|
||||
if os.path.exists(out_path):
|
||||
continue
|
||||
|
||||
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
|
||||
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
inputs = {
|
||||
"source": feats.half().to(device) if device != "cpu" else feats.to(device),
|
||||
"source": feats.half().to(device)
|
||||
if device != "cpu"
|
||||
else feats.to(device),
|
||||
"padding_mask": padding_mask.to(device),
|
||||
"output_layer": 9, # layer 9
|
||||
}
|
||||
@ -78,11 +93,12 @@ else:
|
||||
feats = model.final_proj(logits[0])
|
||||
|
||||
feats = feats.squeeze(0).float().cpu().numpy()
|
||||
if(np.isnan(feats).sum()==0):
|
||||
if np.isnan(feats).sum() == 0:
|
||||
np.save(out_path, feats, allow_pickle=False)
|
||||
else:
|
||||
printt("%s-contains nan"%file)
|
||||
if (idx % n == 0):printt("now-%s,all-%s,%s,%s"%(len(todo),idx,file,feats.shape))
|
||||
printt("%s-contains nan" % file)
|
||||
if idx % n == 0:
|
||||
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape))
|
||||
except:
|
||||
printt(traceback.format_exc())
|
||||
printt("all-feature-done")
|
||||
|
@ -7,9 +7,10 @@ pattern = r"""i18n\((["'][^"']+["'])\)"""
|
||||
# Initialize the dictionary to store key-value pairs
|
||||
data = {}
|
||||
|
||||
|
||||
def process(fn: str):
|
||||
global data
|
||||
with open(fn, 'r', encoding='utf-8') as f:
|
||||
with open(fn, "r", encoding="utf-8") as f:
|
||||
contents = f.read()
|
||||
matches = re.findall(pattern, contents)
|
||||
for key in matches:
|
||||
@ -17,12 +18,13 @@ def process(fn: str):
|
||||
print("extract:", key)
|
||||
data[key] = key
|
||||
|
||||
|
||||
print("processing infer-web.py")
|
||||
process('infer-web.py')
|
||||
process("infer-web.py")
|
||||
|
||||
print("processing gui.py")
|
||||
process('gui.py')
|
||||
process("gui.py")
|
||||
|
||||
# Save as a JSON file
|
||||
with open('./locale/zh_CN.json', 'w', encoding='utf-8') as f:
|
||||
with open("./locale/zh_CN.json", "w", encoding="utf-8") as f:
|
||||
json.dump(data, f, ensure_ascii=False, indent=4)
|
||||
|
572
gui.py
572
gui.py
@ -3,32 +3,36 @@ import sounddevice as sd
|
||||
import noisereduce as nr
|
||||
import numpy as np
|
||||
from fairseq import checkpoint_utils
|
||||
import librosa,torch,parselmouth,faiss,time,threading
|
||||
import librosa, torch, parselmouth, faiss, time, threading
|
||||
import torch.nn.functional as F
|
||||
import torchaudio.transforms as tat
|
||||
|
||||
#import matplotlib.pyplot as plt
|
||||
# import matplotlib.pyplot as plt
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||||
from webui_locale import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class RVC:
|
||||
def __init__(self,key,hubert_path,pth_path,index_path,npy_path,index_rate) -> None:
|
||||
'''
|
||||
def __init__(
|
||||
self, key, hubert_path, pth_path, index_path, npy_path, index_rate
|
||||
) -> None:
|
||||
"""
|
||||
初始化
|
||||
'''
|
||||
self.f0_up_key=key
|
||||
"""
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
self.index=faiss.read_index(index_path)
|
||||
self.index_rate=index_rate
|
||||
'''NOT YET USED'''
|
||||
self.big_npy=np.load(npy_path)
|
||||
self.index = faiss.read_index(index_path)
|
||||
self.index_rate = index_rate
|
||||
"""NOT YET USED"""
|
||||
self.big_npy = np.load(npy_path)
|
||||
model_path = hubert_path
|
||||
print("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
@ -41,9 +45,9 @@ class RVC:
|
||||
self.model.eval()
|
||||
cpt = torch.load(pth_path, map_location="cpu")
|
||||
tgt_sr = cpt["config"][-1]
|
||||
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
|
||||
if_f0=cpt.get("f0",1)
|
||||
if(if_f0==1):
|
||||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||||
if_f0 = cpt.get("f0", 1)
|
||||
if if_f0 == 1:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True)
|
||||
else:
|
||||
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||||
@ -52,36 +56,43 @@ class RVC:
|
||||
self.net_g.eval().to(device)
|
||||
self.net_g.half()
|
||||
|
||||
|
||||
def get_f0_coarse(self,f0):
|
||||
def get_f0_coarse(self, f0):
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (self.f0_mel_max - self.f0_mel_min) + 1
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
||||
self.f0_mel_max - self.f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
# f0_mel[f0_mel > 188] = 188
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse
|
||||
|
||||
def get_f0(self,x, p_len,f0_up_key=0):
|
||||
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
||||
time_step=self.time_step / 1000, voicing_threshold=0.6,
|
||||
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
||||
|
||||
pad_size=(p_len - len(f0) + 1) // 2
|
||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||
def get_f0(self, x, p_len, f0_up_key=0):
|
||||
f0 = (
|
||||
parselmouth.Sound(x, 16000)
|
||||
.to_pitch_ac(
|
||||
time_step=self.time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=self.f0_min,
|
||||
pitch_ceiling=self.f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# f0=suofang(f0)
|
||||
f0bak = f0.copy()
|
||||
f0_coarse=self.get_f0_coarse(f0)
|
||||
f0_coarse = self.get_f0_coarse(f0)
|
||||
return f0_coarse, f0bak
|
||||
|
||||
|
||||
def infer(self,feats:torch.Tensor) -> np.ndarray:
|
||||
'''
|
||||
def infer(self, feats: torch.Tensor) -> np.ndarray:
|
||||
"""
|
||||
推理函数
|
||||
'''
|
||||
audio=feats.clone().cpu().numpy()
|
||||
"""
|
||||
audio = feats.clone().cpu().numpy()
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
feats = feats.view(1, -1)
|
||||
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
@ -96,209 +107,389 @@ class RVC:
|
||||
feats = self.model.final_proj(logits[0])
|
||||
|
||||
####索引优化
|
||||
if(isinstance(self.index,type(None))==False and isinstance(self.big_npy,type(None))==False and self.index_rate!=0):
|
||||
if (
|
||||
isinstance(self.index, type(None)) == False
|
||||
and isinstance(self.big_npy, type(None)) == False
|
||||
and self.index_rate != 0
|
||||
):
|
||||
npy = feats[0].cpu().numpy().astype("float32")
|
||||
_, I = self.index.search(npy, 1)
|
||||
npy=self.big_npy[I.squeeze()].astype("float16")
|
||||
feats = torch.from_numpy(npy).unsqueeze(0).to(device)*self.index_rate + (1-self.index_rate)*feats
|
||||
npy = self.big_npy[I.squeeze()].astype("float16")
|
||||
feats = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate
|
||||
+ (1 - self.index_rate) * feats
|
||||
)
|
||||
|
||||
feats=F.interpolate(feats.permute(0,2,1),scale_factor=2).permute(0,2,1)
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
torch.cuda.synchronize()
|
||||
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
||||
p_len = min(feats.shape[1],12000)#
|
||||
p_len = min(feats.shape[1], 12000) #
|
||||
print(feats.shape)
|
||||
pitch, pitchf = self.get_f0(audio, p_len,self.f0_up_key)
|
||||
p_len = min(feats.shape[1],12000,pitch.shape[0])#太大了爆显存
|
||||
pitch, pitchf = self.get_f0(audio, p_len, self.f0_up_key)
|
||||
p_len = min(feats.shape[1], 12000, pitch.shape[0]) # 太大了爆显存
|
||||
torch.cuda.synchronize()
|
||||
# print(feats.shape,pitch.shape)
|
||||
feats = feats[:,:p_len, :]
|
||||
feats = feats[:, :p_len, :]
|
||||
pitch = pitch[:p_len]
|
||||
pitchf = pitchf[:p_len]
|
||||
p_len = torch.LongTensor([p_len]).to(device)
|
||||
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
|
||||
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
|
||||
ii=0#sid
|
||||
sid=torch.LongTensor([ii]).to(device)
|
||||
ii = 0 # sid
|
||||
sid = torch.LongTensor([ii]).to(device)
|
||||
with torch.no_grad():
|
||||
infered_audio = self.net_g.infer(feats, p_len,pitch,pitchf,sid)[0][0, 0].data.cpu().float()#nsf
|
||||
infered_audio = (
|
||||
self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
) # nsf
|
||||
torch.cuda.synchronize()
|
||||
return infered_audio
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self) -> None:
|
||||
self.hubert_path:str=''
|
||||
self.pth_path:str=''
|
||||
self.index_path:str=''
|
||||
self.npy_path:str=''
|
||||
self.pitch:int=12
|
||||
self.samplerate:int=44100
|
||||
self.block_time:float=1.0#s
|
||||
self.buffer_num:int=1
|
||||
self.threhold:int=-30
|
||||
self.crossfade_time:float=0.08
|
||||
self.extra_time:float=0.04
|
||||
self.I_noise_reduce=False
|
||||
self.O_noise_reduce=False
|
||||
self.index_rate=0.3
|
||||
self.hubert_path: str = ""
|
||||
self.pth_path: str = ""
|
||||
self.index_path: str = ""
|
||||
self.npy_path: str = ""
|
||||
self.pitch: int = 12
|
||||
self.samplerate: int = 44100
|
||||
self.block_time: float = 1.0 # s
|
||||
self.buffer_num: int = 1
|
||||
self.threhold: int = -30
|
||||
self.crossfade_time: float = 0.08
|
||||
self.extra_time: float = 0.04
|
||||
self.I_noise_reduce = False
|
||||
self.O_noise_reduce = False
|
||||
self.index_rate = 0.3
|
||||
|
||||
|
||||
class GUI:
|
||||
def __init__(self) -> None:
|
||||
self.config=Config()
|
||||
self.flag_vc=False
|
||||
|
||||
self.config = Config()
|
||||
self.flag_vc = False
|
||||
|
||||
self.launcher()
|
||||
|
||||
|
||||
def launcher(self):
|
||||
sg.theme('LightBlue3')
|
||||
input_devices,output_devices,_, _=self.get_devices()
|
||||
layout=[
|
||||
sg.theme("LightBlue3")
|
||||
input_devices, output_devices, _, _ = self.get_devices()
|
||||
layout = [
|
||||
[
|
||||
sg.Frame(title=i18n('加载模型'),layout=[
|
||||
[sg.Input(default_text='TEMP\\hubert_base.pt',key='hubert_path'),sg.FileBrowse(i18n('Hubert模型'))],
|
||||
[sg.Input(default_text='TEMP\\atri.pth',key='pth_path'),sg.FileBrowse(i18n('选择.pth文件'))],
|
||||
[sg.Input(default_text='TEMP\\added_IVF512_Flat_atri_baseline_src_feat.index',key='index_path'),sg.FileBrowse(i18n('选择.index文件'))],
|
||||
[sg.Input(default_text='TEMP\\big_src_feature_atri.npy',key='npy_path'),sg.FileBrowse(i18n('选择.npy文件'))]
|
||||
])
|
||||
sg.Frame(
|
||||
title=i18n("加载模型"),
|
||||
layout=[
|
||||
[
|
||||
sg.Input(
|
||||
default_text="TEMP\\hubert_base.pt", key="hubert_path"
|
||||
),
|
||||
sg.FileBrowse(i18n("Hubert模型")),
|
||||
],
|
||||
[
|
||||
sg.Input(default_text="TEMP\\atri.pth", key="pth_path"),
|
||||
sg.FileBrowse(i18n("选择.pth文件")),
|
||||
],
|
||||
[
|
||||
sg.Input(
|
||||
default_text="TEMP\\added_IVF512_Flat_atri_baseline_src_feat.index",
|
||||
key="index_path",
|
||||
),
|
||||
sg.FileBrowse(i18n("选择.index文件")),
|
||||
],
|
||||
[
|
||||
sg.Input(
|
||||
default_text="TEMP\\big_src_feature_atri.npy",
|
||||
key="npy_path",
|
||||
),
|
||||
sg.FileBrowse(i18n("选择.npy文件")),
|
||||
],
|
||||
],
|
||||
)
|
||||
],
|
||||
[
|
||||
sg.Frame(layout=[
|
||||
[sg.Text(i18n("输入设备")),sg.Combo(input_devices,key='sg_input_device',default_value=input_devices[sd.default.device[0]])],
|
||||
[sg.Text(i18n("输出设备")),sg.Combo(output_devices,key='sg_output_device',default_value=output_devices[sd.default.device[1]])]
|
||||
],title=i18n("音频设备(请使用同种类驱动)"))
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("输入设备")),
|
||||
sg.Combo(
|
||||
input_devices,
|
||||
key="sg_input_device",
|
||||
default_value=input_devices[sd.default.device[0]],
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("输出设备")),
|
||||
sg.Combo(
|
||||
output_devices,
|
||||
key="sg_output_device",
|
||||
default_value=output_devices[sd.default.device[1]],
|
||||
),
|
||||
],
|
||||
],
|
||||
title=i18n("音频设备(请使用同种类驱动)"),
|
||||
)
|
||||
],
|
||||
[
|
||||
sg.Frame(layout=[
|
||||
[sg.Text(i18n("响应阈值")),sg.Slider(range=(-60,0),key='threhold',resolution=1,orientation='h',default_value=-30)],
|
||||
[sg.Text(i18n("音调设置")),sg.Slider(range=(-24,24),key='pitch',resolution=1,orientation='h',default_value=12)],
|
||||
[sg.Text(i18n('Index Rate')),sg.Slider(range=(0.0,1.0),key='index_rate',resolution=0.01,orientation='h',default_value=0.5)]
|
||||
],title=i18n("常规设置")),
|
||||
sg.Frame(layout=[
|
||||
[sg.Text(i18n("采样长度")),sg.Slider(range=(0.1,3.0),key='block_time',resolution=0.1,orientation='h',default_value=1.0)],
|
||||
[sg.Text(i18n("淡入淡出长度")),sg.Slider(range=(0.01,0.15),key='crossfade_length',resolution=0.01,orientation='h',default_value=0.08)],
|
||||
[sg.Text(i18n("额外推理时长")),sg.Slider(range=(0.05,3.00),key='extra_time',resolution=0.01,orientation='h',default_value=0.05)],
|
||||
[sg.Checkbox(i18n('输入降噪'),key='I_noise_reduce'),sg.Checkbox(i18n('输出降噪'),key='O_noise_reduce')]
|
||||
],title=i18n("性能设置"))
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("响应阈值")),
|
||||
sg.Slider(
|
||||
range=(-60, 0),
|
||||
key="threhold",
|
||||
resolution=1,
|
||||
orientation="h",
|
||||
default_value=-30,
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("音调设置")),
|
||||
sg.Slider(
|
||||
range=(-24, 24),
|
||||
key="pitch",
|
||||
resolution=1,
|
||||
orientation="h",
|
||||
default_value=12,
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("Index Rate")),
|
||||
sg.Slider(
|
||||
range=(0.0, 1.0),
|
||||
key="index_rate",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=0.5,
|
||||
),
|
||||
],
|
||||
],
|
||||
title=i18n("常规设置"),
|
||||
),
|
||||
sg.Frame(
|
||||
layout=[
|
||||
[
|
||||
sg.Text(i18n("采样长度")),
|
||||
sg.Slider(
|
||||
range=(0.1, 3.0),
|
||||
key="block_time",
|
||||
resolution=0.1,
|
||||
orientation="h",
|
||||
default_value=1.0,
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("淡入淡出长度")),
|
||||
sg.Slider(
|
||||
range=(0.01, 0.15),
|
||||
key="crossfade_length",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=0.08,
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Text(i18n("额外推理时长")),
|
||||
sg.Slider(
|
||||
range=(0.05, 3.00),
|
||||
key="extra_time",
|
||||
resolution=0.01,
|
||||
orientation="h",
|
||||
default_value=0.05,
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
|
||||
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
|
||||
],
|
||||
],
|
||||
title=i18n("性能设置"),
|
||||
),
|
||||
],
|
||||
[
|
||||
sg.Button(i18n("开始音频转换"), key="start_vc"),
|
||||
sg.Button(i18n("停止音频转换"), key="stop_vc"),
|
||||
sg.Text(i18n("推理时间(ms):")),
|
||||
sg.Text("0", key="infer_time"),
|
||||
],
|
||||
[sg.Button(i18n("开始音频转换"),key='start_vc'),sg.Button(i18n("停止音频转换"),key='stop_vc'),sg.Text(i18n("推理时间(ms):")),sg.Text("0",key='infer_time')]
|
||||
]
|
||||
|
||||
self.window=sg.Window("RVC - GUI",layout=layout)
|
||||
|
||||
self.window = sg.Window("RVC - GUI", layout=layout)
|
||||
self.event_handler()
|
||||
|
||||
|
||||
def event_handler(self):
|
||||
while True:
|
||||
event, values = self.window.read()
|
||||
if event ==sg.WINDOW_CLOSED:
|
||||
self.flag_vc=False
|
||||
if event == sg.WINDOW_CLOSED:
|
||||
self.flag_vc = False
|
||||
exit()
|
||||
if event == 'start_vc' and self.flag_vc==False:
|
||||
if event == "start_vc" and self.flag_vc == False:
|
||||
self.set_values(values)
|
||||
print(str(self.config.__dict__))
|
||||
print('using_cuda:'+str(torch.cuda.is_available()))
|
||||
print("using_cuda:" + str(torch.cuda.is_available()))
|
||||
self.start_vc()
|
||||
if event=='stop_vc'and self.flag_vc==True:
|
||||
if event == "stop_vc" and self.flag_vc == True:
|
||||
self.flag_vc = False
|
||||
|
||||
def set_values(self, values):
|
||||
self.set_devices(values["sg_input_device"], values["sg_output_device"])
|
||||
self.config.hubert_path = values["hubert_path"]
|
||||
self.config.pth_path = values["pth_path"]
|
||||
self.config.index_path = values["index_path"]
|
||||
self.config.npy_path = values["npy_path"]
|
||||
self.config.threhold = values["threhold"]
|
||||
self.config.pitch = values["pitch"]
|
||||
self.config.block_time = values["block_time"]
|
||||
self.config.crossfade_time = values["crossfade_length"]
|
||||
self.config.extra_time = values["extra_time"]
|
||||
self.config.I_noise_reduce = values["I_noise_reduce"]
|
||||
self.config.O_noise_reduce = values["O_noise_reduce"]
|
||||
self.config.index_rate = values["index_rate"]
|
||||
|
||||
def set_values(self,values):
|
||||
self.set_devices(values["sg_input_device"],values['sg_output_device'])
|
||||
self.config.hubert_path=values['hubert_path']
|
||||
self.config.pth_path=values['pth_path']
|
||||
self.config.index_path=values['index_path']
|
||||
self.config.npy_path=values['npy_path']
|
||||
self.config.threhold=values['threhold']
|
||||
self.config.pitch=values['pitch']
|
||||
self.config.block_time=values['block_time']
|
||||
self.config.crossfade_time=values['crossfade_length']
|
||||
self.config.extra_time=values['extra_time']
|
||||
self.config.I_noise_reduce=values['I_noise_reduce']
|
||||
self.config.O_noise_reduce=values['O_noise_reduce']
|
||||
self.config.index_rate=values['index_rate']
|
||||
|
||||
def start_vc(self):
|
||||
torch.cuda.empty_cache()
|
||||
self.flag_vc=True
|
||||
self.block_frame=int(self.config.block_time*self.config.samplerate)
|
||||
self.crossfade_frame=int(self.config.crossfade_time*self.config.samplerate)
|
||||
self.sola_search_frame=int(0.012*self.config.samplerate)
|
||||
self.delay_frame=int(0.02*self.config.samplerate)#往前预留0.02s
|
||||
self.extra_frame=int(self.config.extra_time*self.config.samplerate)#往后预留0.04s
|
||||
self.rvc=None
|
||||
self.rvc=RVC(self.config.pitch,self.config.hubert_path,self.config.pth_path,self.config.index_path,self.config.npy_path,self.config.index_rate)
|
||||
self.input_wav:np.ndarray=np.zeros(self.extra_frame+self.crossfade_frame+self.sola_search_frame+self.block_frame,dtype='float32')
|
||||
self.output_wav:torch.Tensor=torch.zeros(self.block_frame,device=device,dtype=torch.float32)
|
||||
self.sola_buffer:torch.Tensor=torch.zeros(self.crossfade_frame,device=device,dtype=torch.float32)
|
||||
self.fade_in_window:torch.Tensor=torch.linspace(0.0,1.0,steps=self.crossfade_frame,device=device,dtype=torch.float32)
|
||||
self.fade_out_window:torch.Tensor = 1 - self.fade_in_window
|
||||
self.resampler1=tat.Resample(orig_freq=self.config.samplerate,new_freq=16000,dtype=torch.float32)
|
||||
self.resampler2=tat.Resample(orig_freq=40000,new_freq=self.config.samplerate,dtype=torch.float32)
|
||||
thread_vc=threading.Thread(target=self.soundinput)
|
||||
self.flag_vc = True
|
||||
self.block_frame = int(self.config.block_time * self.config.samplerate)
|
||||
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
|
||||
self.sola_search_frame = int(0.012 * self.config.samplerate)
|
||||
self.delay_frame = int(0.02 * self.config.samplerate) # 往前预留0.02s
|
||||
self.extra_frame = int(
|
||||
self.config.extra_time * self.config.samplerate
|
||||
) # 往后预留0.04s
|
||||
self.rvc = None
|
||||
self.rvc = RVC(
|
||||
self.config.pitch,
|
||||
self.config.hubert_path,
|
||||
self.config.pth_path,
|
||||
self.config.index_path,
|
||||
self.config.npy_path,
|
||||
self.config.index_rate,
|
||||
)
|
||||
self.input_wav: np.ndarray = np.zeros(
|
||||
self.extra_frame
|
||||
+ self.crossfade_frame
|
||||
+ self.sola_search_frame
|
||||
+ self.block_frame,
|
||||
dtype="float32",
|
||||
)
|
||||
self.output_wav: torch.Tensor = torch.zeros(
|
||||
self.block_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.sola_buffer: torch.Tensor = torch.zeros(
|
||||
self.crossfade_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.fade_in_window: torch.Tensor = torch.linspace(
|
||||
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
|
||||
)
|
||||
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
|
||||
self.resampler1 = tat.Resample(
|
||||
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
|
||||
)
|
||||
self.resampler2 = tat.Resample(
|
||||
orig_freq=40000, new_freq=self.config.samplerate, dtype=torch.float32
|
||||
)
|
||||
thread_vc = threading.Thread(target=self.soundinput)
|
||||
thread_vc.start()
|
||||
|
||||
|
||||
def soundinput(self):
|
||||
'''
|
||||
"""
|
||||
接受音频输入
|
||||
'''
|
||||
with sd.Stream(callback=self.audio_callback, blocksize=self.block_frame,samplerate=self.config.samplerate,dtype='float32'):
|
||||
"""
|
||||
with sd.Stream(
|
||||
callback=self.audio_callback,
|
||||
blocksize=self.block_frame,
|
||||
samplerate=self.config.samplerate,
|
||||
dtype="float32",
|
||||
):
|
||||
while self.flag_vc:
|
||||
time.sleep(self.config.block_time)
|
||||
print('Audio block passed.')
|
||||
print('ENDing VC')
|
||||
print("Audio block passed.")
|
||||
print("ENDing VC")
|
||||
|
||||
|
||||
def audio_callback(self,indata:np.ndarray,outdata:np.ndarray, frames, times, status):
|
||||
'''
|
||||
def audio_callback(
|
||||
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
||||
):
|
||||
"""
|
||||
音频处理
|
||||
'''
|
||||
start_time=time.perf_counter()
|
||||
indata=librosa.to_mono(indata.T)
|
||||
"""
|
||||
start_time = time.perf_counter()
|
||||
indata = librosa.to_mono(indata.T)
|
||||
if self.config.I_noise_reduce:
|
||||
indata[:]=nr.reduce_noise(y=indata,sr=self.config.samplerate)
|
||||
|
||||
'''noise gate'''
|
||||
frame_length=2048
|
||||
hop_length=1024
|
||||
rms=librosa.feature.rms(y=indata,frame_length=frame_length,hop_length=hop_length)
|
||||
db_threhold=librosa.amplitude_to_db(rms,ref=1.0)[0]<self.config.threhold
|
||||
#print(rms.shape,db.shape,db)
|
||||
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
|
||||
|
||||
"""noise gate"""
|
||||
frame_length = 2048
|
||||
hop_length = 1024
|
||||
rms = librosa.feature.rms(
|
||||
y=indata, frame_length=frame_length, hop_length=hop_length
|
||||
)
|
||||
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
|
||||
# print(rms.shape,db.shape,db)
|
||||
for i in range(db_threhold.shape[0]):
|
||||
if db_threhold[i]:
|
||||
indata[i*hop_length:(i+1)*hop_length]=0
|
||||
self.input_wav[:]=np.append(self.input_wav[self.block_frame:],indata)
|
||||
|
||||
#infer
|
||||
print('input_wav:'+str(self.input_wav.shape))
|
||||
#print('infered_wav:'+str(infer_wav.shape))
|
||||
infer_wav:torch.Tensor=self.resampler2(self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav))))[-self.crossfade_frame-self.sola_search_frame-self.block_frame:].to(device)
|
||||
print('infer_wav:'+str(infer_wav.shape))
|
||||
|
||||
indata[i * hop_length : (i + 1) * hop_length] = 0
|
||||
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
|
||||
|
||||
# infer
|
||||
print("input_wav:" + str(self.input_wav.shape))
|
||||
# print('infered_wav:'+str(infer_wav.shape))
|
||||
infer_wav: torch.Tensor = self.resampler2(
|
||||
self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav)))
|
||||
)[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to(
|
||||
device
|
||||
)
|
||||
print("infer_wav:" + str(infer_wav.shape))
|
||||
|
||||
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
||||
cor_nom=F.conv1d(infer_wav[None,None,:self.crossfade_frame + self.sola_search_frame],self.sola_buffer[None,None,:])
|
||||
cor_den=torch.sqrt(F.conv1d(infer_wav[None,None,:self.crossfade_frame + self.sola_search_frame]**2,torch.ones(1, 1,self.crossfade_frame,device=device))+1e-8)
|
||||
sola_offset = torch.argmax( cor_nom[0, 0] / cor_den[0, 0])
|
||||
print('sola offset: ' + str(int(sola_offset)))
|
||||
|
||||
cor_nom = F.conv1d(
|
||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
|
||||
self.sola_buffer[None, None, :],
|
||||
)
|
||||
cor_den = torch.sqrt(
|
||||
F.conv1d(
|
||||
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
|
||||
** 2,
|
||||
torch.ones(1, 1, self.crossfade_frame, device=device),
|
||||
)
|
||||
+ 1e-8
|
||||
)
|
||||
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||||
print("sola offset: " + str(int(sola_offset)))
|
||||
|
||||
# crossfade
|
||||
self.output_wav[:]=infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||
self.output_wav[:self.crossfade_frame] *= self.fade_in_window
|
||||
self.output_wav[:self.crossfade_frame] += self.sola_buffer[:]
|
||||
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
|
||||
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
|
||||
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
|
||||
if sola_offset < self.sola_search_frame:
|
||||
self.sola_buffer[:] = infer_wav[-self.sola_search_frame - self.crossfade_frame + sola_offset: -self.sola_search_frame + sola_offset]* self.fade_out_window
|
||||
self.sola_buffer[:] = (
|
||||
infer_wav[
|
||||
-self.sola_search_frame
|
||||
- self.crossfade_frame
|
||||
+ sola_offset : -self.sola_search_frame
|
||||
+ sola_offset
|
||||
]
|
||||
* self.fade_out_window
|
||||
)
|
||||
else:
|
||||
self.sola_buffer[:] = infer_wav[- self.crossfade_frame :]* self.fade_out_window
|
||||
|
||||
self.sola_buffer[:] = (
|
||||
infer_wav[-self.crossfade_frame :] * self.fade_out_window
|
||||
)
|
||||
|
||||
if self.config.O_noise_reduce:
|
||||
outdata[:]=np.tile(nr.reduce_noise(y=self.output_wav[:].cpu().numpy(),sr=self.config.samplerate),(2,1)).T
|
||||
outdata[:] = np.tile(
|
||||
nr.reduce_noise(
|
||||
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
|
||||
),
|
||||
(2, 1),
|
||||
).T
|
||||
else:
|
||||
outdata[:]=self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||
total_time=time.perf_counter()-start_time
|
||||
print('infer time:'+str(total_time))
|
||||
self.window['infer_time'].update(int(total_time*1000))
|
||||
|
||||
def get_devices(self,update: bool = True):
|
||||
'''获取设备列表'''
|
||||
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
|
||||
total_time = time.perf_counter() - start_time
|
||||
print("infer time:" + str(total_time))
|
||||
self.window["infer_time"].update(int(total_time * 1000))
|
||||
|
||||
def get_devices(self, update: bool = True):
|
||||
"""获取设备列表"""
|
||||
if update:
|
||||
sd._terminate()
|
||||
sd._initialize()
|
||||
@ -317,18 +508,33 @@ class GUI:
|
||||
for d in devices
|
||||
if d["max_output_channels"] > 0
|
||||
]
|
||||
input_devices_indices = [d["index"] for d in devices if d["max_input_channels"] > 0]
|
||||
input_devices_indices = [
|
||||
d["index"] for d in devices if d["max_input_channels"] > 0
|
||||
]
|
||||
output_devices_indices = [
|
||||
d["index"] for d in devices if d["max_output_channels"] > 0
|
||||
]
|
||||
return input_devices, output_devices, input_devices_indices, output_devices_indices
|
||||
|
||||
def set_devices(self,input_device,output_device):
|
||||
'''设置输出设备'''
|
||||
input_devices,output_devices,input_device_indices, output_device_indices=self.get_devices()
|
||||
sd.default.device[0]=input_device_indices[input_devices.index(input_device)]
|
||||
sd.default.device[1]=output_device_indices[output_devices.index(output_device)]
|
||||
print("input device:"+str(sd.default.device[0])+":"+str(input_device))
|
||||
print("output device:"+str(sd.default.device[1])+":"+str(output_device))
|
||||
|
||||
gui=GUI()
|
||||
return (
|
||||
input_devices,
|
||||
output_devices,
|
||||
input_devices_indices,
|
||||
output_devices_indices,
|
||||
)
|
||||
|
||||
def set_devices(self, input_device, output_device):
|
||||
"""设置输出设备"""
|
||||
(
|
||||
input_devices,
|
||||
output_devices,
|
||||
input_device_indices,
|
||||
output_device_indices,
|
||||
) = self.get_devices()
|
||||
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
|
||||
sd.default.device[1] = output_device_indices[
|
||||
output_devices.index(output_device)
|
||||
]
|
||||
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
|
||||
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
|
||||
|
||||
|
||||
gui = GUI()
|
||||
|
1381
infer-web.py
1381
infer-web.py
File diff suppressed because it is too large
Load Diff
@ -1,14 +1,19 @@
|
||||
'''
|
||||
"""
|
||||
|
||||
对源特征进行检索
|
||||
'''
|
||||
import torch, pdb, os,parselmouth
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]="0"
|
||||
"""
|
||||
import torch, pdb, os, parselmouth
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
|
||||
# from models import SynthesizerTrn256#hifigan_nonsf
|
||||
# from infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid as SynthesizerTrn256#hifigan_nsf
|
||||
from infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid as SynthesizerTrn256,
|
||||
) # hifigan_nsf
|
||||
|
||||
# from infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf
|
||||
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf
|
||||
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf
|
||||
@ -16,15 +21,17 @@ from infer_pack.models import SynthesizerTrnMs256NSFsid as SynthesizerTrn256#hif
|
||||
|
||||
from scipy.io import wavfile
|
||||
from fairseq import checkpoint_utils
|
||||
|
||||
# import pyworld
|
||||
import librosa
|
||||
import torch.nn.functional as F
|
||||
import scipy.signal as signal
|
||||
|
||||
# import torchcrepe
|
||||
from time import time as ttime
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model_path = r"E:\codes\py39\vits_vc_gpu_train\hubert_base.pt"#
|
||||
model_path = r"E:\codes\py39\vits_vc_gpu_train\hubert_base.pt" #
|
||||
print("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[model_path],
|
||||
@ -37,7 +44,26 @@ model.eval()
|
||||
|
||||
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256
|
||||
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],109,256,is_half=True)#hifigan#512#256
|
||||
net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256#no_dropout
|
||||
net_g = SynthesizerTrn256(
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 10, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4],
|
||||
183,
|
||||
256,
|
||||
is_half=True,
|
||||
) # hifigan#512#256#no_dropout
|
||||
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,3,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],0)#ts3
|
||||
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2],512,[16,16,4],0)#hifigan-ps-sr
|
||||
#
|
||||
@ -48,51 +74,66 @@ net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0,"1", [3,7,11],[[1,3,5], [1
|
||||
# weights=torch.load("infer/ft-mi-freeze-vocoder-flow-enc_q_1k.pt")
|
||||
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
|
||||
# weights=torch.load("infer/ft-mi-sim1k.pt")
|
||||
weights=torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
||||
print(net_g.load_state_dict(weights,strict=True))
|
||||
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
||||
print(net_g.load_state_dict(weights, strict=True))
|
||||
|
||||
net_g.eval().to(device)
|
||||
net_g.half()
|
||||
def get_f0(x, p_len,f0_up_key=0):
|
||||
|
||||
|
||||
def get_f0(x, p_len, f0_up_key=0):
|
||||
time_step = 160 / 16000 * 1000
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
|
||||
f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
|
||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
||||
f0 = (
|
||||
parselmouth.Sound(x, 16000)
|
||||
.to_pitch_ac(
|
||||
time_step=time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=f0_min,
|
||||
pitch_ceiling=f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
|
||||
pad_size=(p_len - len(f0) + 1) // 2
|
||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
f0bak = f0.copy()
|
||||
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
# f0_mel[f0_mel > 188] = 188
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse, f0bak
|
||||
|
||||
|
||||
import faiss
|
||||
index=faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
||||
big_npy=np.load("infer/big_src_feature_mi.npy")
|
||||
ta0=ta1=ta2=0
|
||||
for idx,name in enumerate(["冬之花clip1.wav",]):##
|
||||
wav_path = "todo-songs/%s" % name#
|
||||
f0_up_key=-2#
|
||||
|
||||
index = faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
||||
big_npy = np.load("infer/big_src_feature_mi.npy")
|
||||
ta0 = ta1 = ta2 = 0
|
||||
for idx, name in enumerate(
|
||||
[
|
||||
"冬之花clip1.wav",
|
||||
]
|
||||
): ##
|
||||
wav_path = "todo-songs/%s" % name #
|
||||
f0_up_key = -2 #
|
||||
audio, sampling_rate = sf.read(wav_path)
|
||||
if len(audio.shape) > 1:
|
||||
audio = librosa.to_mono(audio.transpose(1, 0))
|
||||
if sampling_rate != 16000:
|
||||
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
||||
|
||||
|
||||
feats = torch.from_numpy(audio).float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
@ -104,8 +145,9 @@ for idx,name in enumerate(["冬之花clip1.wav",]):##
|
||||
"padding_mask": padding_mask.to(device),
|
||||
"output_layer": 9, # layer 9
|
||||
}
|
||||
if torch.cuda.is_available(): torch.cuda.synchronize()
|
||||
t0=ttime()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
t0 = ttime()
|
||||
with torch.no_grad():
|
||||
logits = model.extract_features(**inputs)
|
||||
feats = model.final_proj(logits[0])
|
||||
@ -113,35 +155,45 @@ for idx,name in enumerate(["冬之花clip1.wav",]):##
|
||||
####索引优化
|
||||
npy = feats[0].cpu().numpy().astype("float32")
|
||||
D, I = index.search(npy, 1)
|
||||
feats = torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
|
||||
feats = (
|
||||
torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
|
||||
)
|
||||
|
||||
feats=F.interpolate(feats.permute(0,2,1),scale_factor=2).permute(0,2,1)
|
||||
if torch.cuda.is_available(): torch.cuda.synchronize()
|
||||
t1=ttime()
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
t1 = ttime()
|
||||
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
||||
p_len = min(feats.shape[1],10000)#
|
||||
pitch, pitchf = get_f0(audio, p_len,f0_up_key)
|
||||
p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
||||
if torch.cuda.is_available(): torch.cuda.synchronize()
|
||||
t2=ttime()
|
||||
feats = feats[:,:p_len, :]
|
||||
p_len = min(feats.shape[1], 10000) #
|
||||
pitch, pitchf = get_f0(audio, p_len, f0_up_key)
|
||||
p_len = min(feats.shape[1], 10000, pitch.shape[0]) # 太大了爆显存
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
t2 = ttime()
|
||||
feats = feats[:, :p_len, :]
|
||||
pitch = pitch[:p_len]
|
||||
pitchf = pitchf[:p_len]
|
||||
p_len = torch.LongTensor([p_len]).to(device)
|
||||
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
|
||||
sid=torch.LongTensor([0]).to(device)
|
||||
sid = torch.LongTensor([0]).to(device)
|
||||
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
|
||||
with torch.no_grad():
|
||||
audio = net_g.infer(feats, p_len,pitch,pitchf,sid)[0][0, 0].data.cpu().float().numpy()#nsf
|
||||
if torch.cuda.is_available(): torch.cuda.synchronize()
|
||||
t3=ttime()
|
||||
ta0+=(t1-t0)
|
||||
ta1+=(t2-t1)
|
||||
ta2+=(t3-t2)
|
||||
audio = (
|
||||
net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
) # nsf
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.synchronize()
|
||||
t3 = ttime()
|
||||
ta0 += t1 - t0
|
||||
ta1 += t2 - t1
|
||||
ta2 += t3 - t2
|
||||
# wavfile.write("ft-mi_1k-index256-noD-%s.wav"%name, 40000, audio)##
|
||||
# wavfile.write("ft-mi-freeze-vocoder-flow-enc_q_1k-%s.wav"%name, 40000, audio)##
|
||||
# wavfile.write("ft-mi-sim1k-%s.wav"%name, 40000, audio)##
|
||||
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav"%name, 40000, audio)##
|
||||
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
|
||||
|
||||
|
||||
print(ta0,ta1,ta2)#
|
||||
print(ta0, ta1, ta2) #
|
||||
|
@ -1,31 +1,31 @@
|
||||
'''
|
||||
"""
|
||||
格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
|
||||
'''
|
||||
import faiss,numpy as np,os
|
||||
"""
|
||||
import faiss, numpy as np, os
|
||||
|
||||
# ###########如果是原始特征要先写save
|
||||
inp_root=r"E:\codes\py39\dataset\mi\2-co256"
|
||||
npys=[]
|
||||
inp_root = r"E:\codes\py39\dataset\mi\2-co256"
|
||||
npys = []
|
||||
for name in sorted(list(os.listdir(inp_root))):
|
||||
phone=np.load("%s/%s"%(inp_root,name))
|
||||
phone = np.load("%s/%s" % (inp_root, name))
|
||||
npys.append(phone)
|
||||
big_npy=np.concatenate(npys,0)
|
||||
print(big_npy.shape)#(6196072, 192)#fp32#4.43G
|
||||
np.save("infer/big_src_feature_mi.npy",big_npy)
|
||||
big_npy = np.concatenate(npys, 0)
|
||||
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
|
||||
np.save("infer/big_src_feature_mi.npy", big_npy)
|
||||
|
||||
##################train+add
|
||||
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
|
||||
print(big_npy.shape)
|
||||
index = faiss.index_factory(256, "IVF512,Flat")#mi
|
||||
index = faiss.index_factory(256, "IVF512,Flat") # mi
|
||||
print("training")
|
||||
index_ivf = faiss.extract_index_ivf(index)#
|
||||
index_ivf = faiss.extract_index_ivf(index) #
|
||||
index_ivf.nprobe = 9
|
||||
index.train(big_npy)
|
||||
faiss.write_index(index, 'infer/trained_IVF512_Flat_mi_baseline_src_feat.index')
|
||||
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
|
||||
print("adding")
|
||||
index.add(big_npy)
|
||||
faiss.write_index(index,"infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
||||
'''
|
||||
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
||||
"""
|
||||
大小(都是FP32)
|
||||
big_src_feature 2.95G
|
||||
(3098036, 256)
|
||||
@ -33,4 +33,4 @@ big_emb 4.43G
|
||||
(6196072, 192)
|
||||
big_emb双倍是因为求特征要repeat后再加pitch
|
||||
|
||||
'''
|
||||
"""
|
||||
|
@ -1,11 +1,16 @@
|
||||
import torch,pdb
|
||||
import torch, pdb
|
||||
|
||||
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-suc\G_1000.pth")["model"]#sim_nsf#
|
||||
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder-flow-enc_q\G_1000.pth")["model"]#sim_nsf#
|
||||
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder\G_1000.pth")["model"]#sim_nsf#
|
||||
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-test\G_1000.pth")["model"]#sim_nsf#
|
||||
a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-no_opt-no_dropout\G_1000.pth")["model"]#sim_nsf#
|
||||
for key in a.keys():a[key]=a[key].half()
|
||||
a = torch.load(
|
||||
r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-no_opt-no_dropout\G_1000.pth"
|
||||
)[
|
||||
"model"
|
||||
] # sim_nsf#
|
||||
for key in a.keys():
|
||||
a[key] = a[key].half()
|
||||
# torch.save(a,"ft-mi-freeze-vocoder_true_1k.pt")#
|
||||
# torch.save(a,"ft-mi-sim1k.pt")#
|
||||
torch.save(a,"ft-mi-no_opt-no_dropout.pt")#
|
||||
torch.save(a, "ft-mi-no_opt-no_dropout.pt") #
|
||||
|
@ -48,8 +48,10 @@ def slice_segments(x, ids_str, segment_size=4):
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments2(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
|
@ -1,4 +1,4 @@
|
||||
import math,pdb,os
|
||||
import math, pdb, os
|
||||
from time import time as ttime
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -12,9 +12,20 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer_pack import commons
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
def __init__(
|
||||
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -24,8 +35,8 @@ class TextEncoder256(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@ -33,12 +44,12 @@ class TextEncoder256(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
@ -48,8 +59,20 @@ class TextEncoder256(nn.Module):
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder256Sim(nn.Module):
|
||||
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -59,8 +82,8 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@ -68,17 +91,21 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
return x,x_mask
|
||||
return x, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -126,6 +153,8 @@ class ResidualCouplingBlock(nn.Module):
|
||||
def remove_weight_norm(self):
|
||||
for i in range(self.n_flows):
|
||||
self.flows[i * 2].remove_weight_norm()
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -169,6 +198,8 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -243,8 +274,10 @@ class Generator(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
@ -259,10 +292,15 @@ class SineGen(torch.nn.Module):
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
@ -277,8 +315,8 @@ class SineGen(torch.nn.Module):
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0,upp):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
@ -286,32 +324,52 @@ class SineGen(torch.nn.Module):
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one*=upp
|
||||
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
||||
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
||||
tmp_over_one%=1
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
@ -328,26 +386,37 @@ class SourceModuleHnNSF(torch.nn.Module):
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half=is_half
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x,upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
||||
if(self.is_half):sine_wavs=sine_wavs.half()
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
if self.is_half:
|
||||
sine_wavs = sine_wavs.half()
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
return sine_merge,None,None# noise, uv
|
||||
return sine_merge, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -360,7 +429,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
is_half=False
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@ -368,9 +437,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr,
|
||||
harmonic_num=0,
|
||||
is_half=is_half
|
||||
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
||||
)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.conv_pre = Conv1d(
|
||||
@ -393,9 +460,16 @@ class GeneratorNSF(torch.nn.Module):
|
||||
)
|
||||
)
|
||||
if i + 1 < len(upsample_rates):
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
||||
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
||||
self.noise_convs.append(
|
||||
Conv1d(
|
||||
1,
|
||||
c_cur,
|
||||
kernel_size=stride_f0 * 2,
|
||||
stride=stride_f0,
|
||||
padding=stride_f0 // 2,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||
|
||||
@ -413,10 +487,10 @@ class GeneratorNSF(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
self.upp=np.prod(upsample_rates)
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, f0,g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
||||
def forward(self, x, f0, g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||
har_source = har_source.transpose(1, 2)
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
@ -444,11 +518,15 @@ class GeneratorNSF(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
sr2sr={
|
||||
"32k":32000,
|
||||
"40k":40000,
|
||||
"48k":48000,
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -472,10 +550,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
if(type(sr)==type("strr")):
|
||||
sr=sr2sr[sr]
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -493,7 +570,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@ -511,7 +588,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@ -526,13 +605,16 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch,pitchf, y, y_lengths,ds):#这里ds是id,[bs,1]
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||
): # 这里ds是id,[bs,1]
|
||||
# print(1,pitch.shape)#[bs,t]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
@ -542,20 +624,20 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||
pitchf = commons.slice_segments2(
|
||||
pitchf, ids_slice, self.segment_size
|
||||
)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
# print(-2,pitchf.shape,z_slice.shape)
|
||||
o = self.dec(z_slice,pitchf, g=g)
|
||||
o = self.dec(z_slice, pitchf, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0,sid,max_len=None):
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -579,7 +661,6 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
sr=None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@ -598,7 +679,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@ -606,7 +687,8 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,f0=False
|
||||
p_dropout,
|
||||
f0=False,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
@ -616,7 +698,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@ -631,14 +713,14 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, y, y_lengths,ds):#这里ds是id,[bs,1]
|
||||
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
@ -649,13 +731,15 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
o = self.dec(z_slice, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
def infer(self, phone, phone_lengths,sid,max_len=None):
|
||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len],g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
@ -684,7 +768,6 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
use_sdp=True,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@ -703,7 +786,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256Sim(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@ -721,20 +804,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, pitchf, y_lengths,ds): # y是spec不需要了现在
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
@ -742,22 +829,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
x, y_lengths, self.segment_size
|
||||
)
|
||||
|
||||
pitchf = commons.slice_segments2(
|
||||
pitchf, ids_slice, self.segment_size
|
||||
)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
o = self.dec(z_slice, pitchf, g=g)
|
||||
return o, ids_slice
|
||||
def infer(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
||||
|
||||
def infer(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
return o, o
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
periods = [2, 3, 5, 7, 11,17]
|
||||
periods = [2, 3, 5, 7, 11, 17]
|
||||
# periods = [3, 5, 7, 11, 17, 23, 37]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
@ -767,7 +856,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []#
|
||||
y_d_rs = [] #
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
@ -783,6 +872,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
@ -812,6 +902,7 @@ class DiscriminatorS(torch.nn.Module):
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
@ -889,4 +980,3 @@ class DiscriminatorP(torch.nn.Module):
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
import math,pdb,os
|
||||
import math, pdb, os
|
||||
from time import time as ttime
|
||||
import torch
|
||||
from torch import nn
|
||||
@ -12,9 +12,20 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer_pack import commons
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
def __init__(
|
||||
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -24,8 +35,8 @@ class TextEncoder256(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@ -33,12 +44,12 @@ class TextEncoder256(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
@ -48,8 +59,20 @@ class TextEncoder256(nn.Module):
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder256Sim(nn.Module):
|
||||
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -59,8 +82,8 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@ -68,17 +91,21 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
return x,x_mask
|
||||
return x, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -126,6 +153,8 @@ class ResidualCouplingBlock(nn.Module):
|
||||
def remove_weight_norm(self):
|
||||
for i in range(self.n_flows):
|
||||
self.flows[i * 2].remove_weight_norm()
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -169,6 +198,8 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -243,8 +274,10 @@ class Generator(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
@ -259,10 +292,15 @@ class SineGen(torch.nn.Module):
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
@ -277,8 +315,8 @@ class SineGen(torch.nn.Module):
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0,upp):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
@ -286,32 +324,52 @@ class SineGen(torch.nn.Module):
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one*=upp
|
||||
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
||||
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
||||
tmp_over_one%=1
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
@ -328,26 +386,37 @@ class SourceModuleHnNSF(torch.nn.Module):
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half=is_half
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x,upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
||||
if(self.is_half):sine_wavs=sine_wavs.half()
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
if self.is_half:
|
||||
sine_wavs = sine_wavs.half()
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
return sine_merge,None,None# noise, uv
|
||||
return sine_merge, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -360,7 +429,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
is_half=False
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@ -368,9 +437,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr,
|
||||
harmonic_num=0,
|
||||
is_half=is_half
|
||||
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
||||
)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.conv_pre = Conv1d(
|
||||
@ -393,9 +460,16 @@ class GeneratorNSF(torch.nn.Module):
|
||||
)
|
||||
)
|
||||
if i + 1 < len(upsample_rates):
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
||||
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
||||
self.noise_convs.append(
|
||||
Conv1d(
|
||||
1,
|
||||
c_cur,
|
||||
kernel_size=stride_f0 * 2,
|
||||
stride=stride_f0,
|
||||
padding=stride_f0 // 2,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||
|
||||
@ -413,10 +487,10 @@ class GeneratorNSF(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
self.upp=np.prod(upsample_rates)
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, f0,g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
||||
def forward(self, x, f0, g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||
har_source = har_source.transpose(1, 2)
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
@ -444,11 +518,15 @@ class GeneratorNSF(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
sr2sr={
|
||||
"32k":32000,
|
||||
"40k":40000,
|
||||
"48k":48000,
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -472,10 +550,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
if(type(sr)==type("strr")):
|
||||
sr=sr2sr[sr]
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -493,7 +570,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@ -511,7 +588,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@ -526,21 +605,22 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, nsff0 ,sid, rnd, max_len=None):
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||
return o
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
@ -569,7 +649,6 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
use_sdp=True,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@ -588,7 +667,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256Sim(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@ -606,30 +685,35 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
return o
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
periods = [2, 3, 5, 7, 11,17]
|
||||
periods = [2, 3, 5, 7, 11, 17]
|
||||
# periods = [3, 5, 7, 11, 17, 23, 37]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
@ -639,7 +723,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []#
|
||||
y_d_rs = [] #
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
@ -655,6 +739,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
@ -684,6 +769,7 @@ class DiscriminatorS(torch.nn.Module):
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
@ -761,4 +847,3 @@ class DiscriminatorP(torch.nn.Module):
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
@ -9,66 +9,63 @@ DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {
|
||||
'tails': tails,
|
||||
'tail_bound': tail_bound
|
||||
}
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(
|
||||
inputs[..., None] >= bin_locations,
|
||||
dim=-1
|
||||
) - 1
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails='linear',
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == 'linear':
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
@ -77,45 +74,57 @@ def unconstrained_rational_quadratic_spline(inputs,
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
def rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0., right=1., bottom=0., top=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError('Input to a transform is not within its domain')
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin width too large for the number of bins')
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin height too large for the number of bins')
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
@ -126,7 +135,7 @@ def rational_quadratic_spline(inputs,
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
@ -150,15 +159,13 @@ def rational_quadratic_spline(inputs,
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (((inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta)
|
||||
+ input_heights * (input_delta - input_derivatives)))
|
||||
b = (input_heights * input_derivatives
|
||||
- (inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta))
|
||||
c = - input_delta * (inputs - input_cumheights)
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
@ -167,11 +174,15 @@ def rational_quadratic_spline(inputs,
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2))
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
@ -179,15 +190,20 @@ def rational_quadratic_spline(inputs,
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2)
|
||||
+ input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2))
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
191
infer_uvr5.py
191
infer_uvr5.py
@ -1,108 +1,171 @@
|
||||
import os,sys,torch,warnings,pdb
|
||||
import os, sys, torch, warnings, pdb
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
import librosa
|
||||
import importlib
|
||||
import numpy as np
|
||||
import hashlib , math
|
||||
import numpy as np
|
||||
import hashlib, math
|
||||
from tqdm import tqdm
|
||||
from uvr5_pack.lib_v5 import spec_utils
|
||||
from uvr5_pack.utils import _get_name_params,inference
|
||||
from uvr5_pack.utils import _get_name_params, inference
|
||||
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||||
from scipy.io import wavfile
|
||||
|
||||
class _audio_pre_():
|
||||
def __init__(self, model_path,device,is_half):
|
||||
|
||||
class _audio_pre_:
|
||||
def __init__(self, model_path, device, is_half):
|
||||
self.model_path = model_path
|
||||
self.device = device
|
||||
self.data = {
|
||||
# Processing Options
|
||||
'postprocess': False,
|
||||
'tta': False,
|
||||
"postprocess": False,
|
||||
"tta": False,
|
||||
# Constants
|
||||
'window_size': 512,
|
||||
'agg': 10,
|
||||
'high_end_process': 'mirroring',
|
||||
"window_size": 512,
|
||||
"agg": 10,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
nn_arch_sizes = [
|
||||
31191, # default
|
||||
33966,61968, 123821, 123812, 537238 # custom
|
||||
31191, # default
|
||||
33966,
|
||||
61968,
|
||||
123821,
|
||||
123812,
|
||||
537238, # custom
|
||||
]
|
||||
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
||||
model_size = math.ceil(os.stat(model_path ).st_size / 1024)
|
||||
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
||||
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
||||
model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
|
||||
param_name ,model_params_d = _get_name_params(model_path , model_hash)
|
||||
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
|
||||
model_size = math.ceil(os.stat(model_path).st_size / 1024)
|
||||
nn_architecture = "{}KB".format(
|
||||
min(nn_arch_sizes, key=lambda x: abs(x - model_size))
|
||||
)
|
||||
nets = importlib.import_module(
|
||||
"uvr5_pack.lib_v5.nets"
|
||||
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
|
||||
package=None,
|
||||
)
|
||||
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
||||
param_name, model_params_d = _get_name_params(model_path, model_hash)
|
||||
|
||||
mp = ModelParameters(model_params_d)
|
||||
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
||||
cpk = torch.load( model_path , map_location='cpu')
|
||||
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(cpk)
|
||||
model.eval()
|
||||
if(is_half):model = model.half().to(device)
|
||||
else:model = model.to(device)
|
||||
if is_half:
|
||||
model = model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
|
||||
self.mp = mp
|
||||
self.model = model
|
||||
|
||||
def _path_audio_(self, music_file ,ins_root=None,vocal_root=None):
|
||||
if(ins_root is None and vocal_root is None):return "No save root."
|
||||
name=os.path.basename(music_file)
|
||||
if(ins_root is not None):os.makedirs(ins_root, exist_ok=True)
|
||||
if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True)
|
||||
def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
|
||||
if ins_root is None and vocal_root is None:
|
||||
return "No save root."
|
||||
name = os.path.basename(music_file)
|
||||
if ins_root is not None:
|
||||
os.makedirs(ins_root, exist_ok=True)
|
||||
if vocal_root is not None:
|
||||
os.makedirs(vocal_root, exist_ok=True)
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
bands_n = len(self.mp.param['band'])
|
||||
bands_n = len(self.mp.param["band"])
|
||||
# print(bands_n)
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param['band'][d]
|
||||
if d == bands_n: # high-end band
|
||||
X_wave[d], _ = librosa.core.load(#理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param["band"][d]
|
||||
if d == bands_n: # high-end band
|
||||
(
|
||||
X_wave[d],
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
self.mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
X_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
self.mp.param["mid_side"],
|
||||
self.mp.param["mid_side_b2"],
|
||||
self.mp.param["reverse"],
|
||||
)
|
||||
# pdb.set_trace()
|
||||
if d == bands_n and self.data['high_end_process'] != 'none':
|
||||
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
|
||||
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
||||
if d == bands_n and self.data["high_end_process"] != "none":
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data['agg']/100)
|
||||
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
aggressiveness = {
|
||||
"value": aggresive_set,
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data)
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
# Postprocess
|
||||
if self.data['postprocess']:
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
pred = spec_utils.mask_silence(pred, pred_inv)
|
||||
y_spec_m = pred * X_phase
|
||||
v_spec_m = X_spec_m - y_spec_m
|
||||
|
||||
if (ins_root is not None):
|
||||
if self.data['high_end_process'].startswith('mirroring'):
|
||||
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_)
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||
print ('%s instruments done'%name)
|
||||
wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) #
|
||||
if (vocal_root is not None):
|
||||
if self.data['high_end_process'].startswith('mirroring'):
|
||||
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
||||
print("%s instruments done" % name)
|
||||
wavfile.write(
|
||||
os.path.join(ins_root, "instrument_{}.wav".format(name)),
|
||||
self.mp.param["sr"],
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
) #
|
||||
if vocal_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
print ('%s vocals done'%name)
|
||||
wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16"))
|
||||
print("%s vocals done" % name)
|
||||
wavfile.write(
|
||||
os.path.join(vocal_root, "vocal_{}.wav".format(name)),
|
||||
self.mp.param["sr"],
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
device = 'cuda'
|
||||
is_half=True
|
||||
model_path='uvr5_weights/2_HP-UVR.pth'
|
||||
pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True)
|
||||
audio_path = '神女劈观.aac'
|
||||
save_path = 'opt'
|
||||
pre_fun._path_audio_(audio_path , save_path,save_path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
device = "cuda"
|
||||
is_half = True
|
||||
model_path = "uvr5_weights/2_HP-UVR.pth"
|
||||
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
|
||||
audio_path = "神女劈观.aac"
|
||||
save_path = "opt"
|
||||
pre_fun._path_audio_(audio_path, save_path, save_path)
|
||||
|
@ -31,7 +31,9 @@ for lang_file in languages:
|
||||
del lang_data[key]
|
||||
|
||||
# Sort the keys of the language file to match the order of the standard file
|
||||
lang_data = OrderedDict(sorted(lang_data.items(), key=lambda x: list(standard_data.keys()).index(x[0])))
|
||||
lang_data = OrderedDict(
|
||||
sorted(lang_data.items(), key=lambda x: list(standard_data.keys()).index(x[0]))
|
||||
)
|
||||
|
||||
# Save the updated language file
|
||||
with open(lang_file, "w", encoding="utf-8") as f:
|
||||
|
@ -1,11 +1,15 @@
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
def load_audio(file,sr):
|
||||
|
||||
|
||||
def load_audio(file, sr):
|
||||
try:
|
||||
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
file=file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")#防止小白拷路径头尾带了空格和"和回车
|
||||
file = (
|
||||
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
) # 防止小白拷路径头尾带了空格和"和回车
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
|
159
slicer2.py
159
slicer2.py
@ -18,9 +18,7 @@ def get_rms(
|
||||
x_shape_trimmed = list(y.shape)
|
||||
x_shape_trimmed[axis] -= frame_length - 1
|
||||
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
||||
xw = np.lib.stride_tricks.as_strided(
|
||||
y, shape=out_shape, strides=out_strides
|
||||
)
|
||||
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
||||
if axis < 0:
|
||||
target_axis = axis - 1
|
||||
else:
|
||||
@ -38,19 +36,25 @@ def get_rms(
|
||||
|
||||
|
||||
class Slicer:
|
||||
def __init__(self,
|
||||
sr: int,
|
||||
threshold: float = -40.,
|
||||
min_length: int = 5000,
|
||||
min_interval: int = 300,
|
||||
hop_size: int = 20,
|
||||
max_sil_kept: int = 5000):
|
||||
def __init__(
|
||||
self,
|
||||
sr: int,
|
||||
threshold: float = -40.0,
|
||||
min_length: int = 5000,
|
||||
min_interval: int = 300,
|
||||
hop_size: int = 20,
|
||||
max_sil_kept: int = 5000,
|
||||
):
|
||||
if not min_length >= min_interval >= hop_size:
|
||||
raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
|
||||
raise ValueError(
|
||||
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
||||
)
|
||||
if not max_sil_kept >= hop_size:
|
||||
raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
|
||||
raise ValueError(
|
||||
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
||||
)
|
||||
min_interval = sr * min_interval / 1000
|
||||
self.threshold = 10 ** (threshold / 20.)
|
||||
self.threshold = 10 ** (threshold / 20.0)
|
||||
self.hop_size = round(sr * hop_size / 1000)
|
||||
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
||||
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
||||
@ -59,9 +63,13 @@ class Slicer:
|
||||
|
||||
def _apply_slice(self, waveform, begin, end):
|
||||
if len(waveform.shape) > 1:
|
||||
return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
|
||||
return waveform[
|
||||
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
||||
]
|
||||
else:
|
||||
return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
|
||||
return waveform[
|
||||
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
||||
]
|
||||
|
||||
# @timeit
|
||||
def slice(self, waveform):
|
||||
@ -71,7 +79,9 @@ class Slicer:
|
||||
samples = waveform
|
||||
if samples.shape[0] <= self.min_length:
|
||||
return [waveform]
|
||||
rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
|
||||
rms_list = get_rms(
|
||||
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
||||
).squeeze(0)
|
||||
sil_tags = []
|
||||
silence_start = None
|
||||
clip_start = 0
|
||||
@ -87,23 +97,37 @@ class Slicer:
|
||||
continue
|
||||
# Clear recorded silence start if interval is not enough or clip is too short
|
||||
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
||||
need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
|
||||
need_slice_middle = (
|
||||
i - silence_start >= self.min_interval
|
||||
and i - clip_start >= self.min_length
|
||||
)
|
||||
if not is_leading_silence and not need_slice_middle:
|
||||
silence_start = None
|
||||
continue
|
||||
# Need slicing. Record the range of silent frames to be removed.
|
||||
if i - silence_start <= self.max_sil_kept:
|
||||
pos = rms_list[silence_start: i + 1].argmin() + silence_start
|
||||
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos))
|
||||
else:
|
||||
sil_tags.append((pos, pos))
|
||||
clip_start = pos
|
||||
elif i - silence_start <= self.max_sil_kept * 2:
|
||||
pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
|
||||
pos = rms_list[
|
||||
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
pos += i - self.max_sil_kept
|
||||
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
||||
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
||||
pos_l = (
|
||||
rms_list[
|
||||
silence_start : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
+ silence_start
|
||||
)
|
||||
pos_r = (
|
||||
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
||||
+ i
|
||||
- self.max_sil_kept
|
||||
)
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos_r))
|
||||
clip_start = pos_r
|
||||
@ -111,8 +135,17 @@ class Slicer:
|
||||
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
||||
clip_start = max(pos_r, pos)
|
||||
else:
|
||||
pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
|
||||
pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
|
||||
pos_l = (
|
||||
rms_list[
|
||||
silence_start : silence_start + self.max_sil_kept + 1
|
||||
].argmin()
|
||||
+ silence_start
|
||||
)
|
||||
pos_r = (
|
||||
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
||||
+ i
|
||||
- self.max_sil_kept
|
||||
)
|
||||
if silence_start == 0:
|
||||
sil_tags.append((0, pos_r))
|
||||
else:
|
||||
@ -121,9 +154,12 @@ class Slicer:
|
||||
silence_start = None
|
||||
# Deal with trailing silence.
|
||||
total_frames = rms_list.shape[0]
|
||||
if silence_start is not None and total_frames - silence_start >= self.min_interval:
|
||||
if (
|
||||
silence_start is not None
|
||||
and total_frames - silence_start >= self.min_interval
|
||||
):
|
||||
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
||||
pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
|
||||
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
||||
sil_tags.append((pos, total_frames + 1))
|
||||
# Apply and return slices.
|
||||
if len(sil_tags) == 0:
|
||||
@ -133,9 +169,13 @@ class Slicer:
|
||||
if sil_tags[0][0] > 0:
|
||||
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
||||
for i in range(len(sil_tags) - 1):
|
||||
chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
|
||||
chunks.append(
|
||||
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
||||
)
|
||||
if sil_tags[-1][1] < total_frames:
|
||||
chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
|
||||
chunks.append(
|
||||
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
||||
)
|
||||
return chunks
|
||||
|
||||
|
||||
@ -147,18 +187,45 @@ def main():
|
||||
import soundfile
|
||||
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('audio', type=str, help='The audio to be sliced')
|
||||
parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
|
||||
parser.add_argument('--db_thresh', type=float, required=False, default=-40,
|
||||
help='The dB threshold for silence detection')
|
||||
parser.add_argument('--min_length', type=int, required=False, default=5000,
|
||||
help='The minimum milliseconds required for each sliced audio clip')
|
||||
parser.add_argument('--min_interval', type=int, required=False, default=300,
|
||||
help='The minimum milliseconds for a silence part to be sliced')
|
||||
parser.add_argument('--hop_size', type=int, required=False, default=10,
|
||||
help='Frame length in milliseconds')
|
||||
parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
|
||||
help='The maximum silence length kept around the sliced clip, presented in milliseconds')
|
||||
parser.add_argument("audio", type=str, help="The audio to be sliced")
|
||||
parser.add_argument(
|
||||
"--out", type=str, help="Output directory of the sliced audio clips"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--db_thresh",
|
||||
type=float,
|
||||
required=False,
|
||||
default=-40,
|
||||
help="The dB threshold for silence detection",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--min_length",
|
||||
type=int,
|
||||
required=False,
|
||||
default=5000,
|
||||
help="The minimum milliseconds required for each sliced audio clip",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--min_interval",
|
||||
type=int,
|
||||
required=False,
|
||||
default=300,
|
||||
help="The minimum milliseconds for a silence part to be sliced",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hop_size",
|
||||
type=int,
|
||||
required=False,
|
||||
default=10,
|
||||
help="Frame length in milliseconds",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_sil_kept",
|
||||
type=int,
|
||||
required=False,
|
||||
default=500,
|
||||
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
out = args.out
|
||||
if out is None:
|
||||
@ -170,7 +237,7 @@ def main():
|
||||
min_length=args.min_length,
|
||||
min_interval=args.min_interval,
|
||||
hop_size=args.hop_size,
|
||||
max_sil_kept=args.max_sil_kept
|
||||
max_sil_kept=args.max_sil_kept,
|
||||
)
|
||||
chunks = slicer.slice(audio)
|
||||
if not os.path.exists(out):
|
||||
@ -178,8 +245,16 @@ def main():
|
||||
for i, chunk in enumerate(chunks):
|
||||
if len(chunk.shape) > 1:
|
||||
chunk = chunk.T
|
||||
soundfile.write(os.path.join(out, f'%s_%d.wav' % (os.path.basename(args.audio).rsplit('.', maxsplit=1)[0], i)), chunk, sr)
|
||||
soundfile.write(
|
||||
os.path.join(
|
||||
out,
|
||||
f"%s_%d.wav"
|
||||
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
|
||||
),
|
||||
chunk,
|
||||
sr,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@ -1,4 +1,4 @@
|
||||
import os,traceback
|
||||
import os, traceback
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
@ -6,6 +6,7 @@ import torch.utils.data
|
||||
from mel_processing import spectrogram_torch
|
||||
from utils import load_wav_to_torch, load_filepaths_and_text
|
||||
|
||||
|
||||
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, text pairs
|
||||
@ -15,14 +16,14 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, audiopaths_and_text, hparams):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self._filter()
|
||||
|
||||
def _filter(self):
|
||||
@ -34,12 +35,13 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
# spec_length = wav_length // hop_length
|
||||
audiopaths_and_text_new = []
|
||||
lengths = []
|
||||
for audiopath, text, pitch,pitchf,dv in self.audiopaths_and_text:
|
||||
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
||||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||||
audiopaths_and_text_new.append([audiopath, text, pitch,pitchf,dv])
|
||||
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
||||
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
||||
self.audiopaths_and_text = audiopaths_and_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
@ -54,7 +56,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
|
||||
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
||||
spec, wav = self.get_audio(file)
|
||||
dv=self.get_sid(dv)
|
||||
dv = self.get_sid(dv)
|
||||
|
||||
len_phone = phone.size()[0]
|
||||
len_spec = spec.size()[-1]
|
||||
@ -71,9 +73,9 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
pitch = pitch[:len_min]
|
||||
pitchf = pitchf[:len_min]
|
||||
|
||||
return (spec, wav, phone, pitch,pitchf,dv)
|
||||
return (spec, wav, phone, pitch, pitchf, dv)
|
||||
|
||||
def get_labels(self, phone, pitch,pitchf):
|
||||
def get_labels(self, phone, pitch, pitchf):
|
||||
phone = np.load(phone)
|
||||
phone = np.repeat(phone, 2, axis=0)
|
||||
pitch = np.load(pitch)
|
||||
@ -86,7 +88,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
phone = torch.FloatTensor(phone)
|
||||
pitch = torch.LongTensor(pitch)
|
||||
pitchf = torch.FloatTensor(pitchf)
|
||||
return phone, pitch,pitchf
|
||||
return phone, pitch, pitchf
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio, sampling_rate = load_wav_to_torch(filename)
|
||||
@ -103,10 +105,15 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
print (spec_filename,traceback.format_exc())
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||||
self.sampling_rate, self.hop_length, self.win_length,
|
||||
center=False)
|
||||
print(spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
else:
|
||||
@ -127,6 +134,8 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
||||
|
||||
class TextAudioCollateMultiNSFsid:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
@ -155,7 +164,9 @@ class TextAudioCollateMultiNSFsid:
|
||||
|
||||
max_phone_len = max([x[2].size(0) for x in batch])
|
||||
phone_lengths = torch.LongTensor(len(batch))
|
||||
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])#(spec, wav, phone, pitch)
|
||||
phone_padded = torch.FloatTensor(
|
||||
len(batch), max_phone_len, batch[0][2].shape[1]
|
||||
) # (spec, wav, phone, pitch)
|
||||
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
||||
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
||||
phone_padded.zero_()
|
||||
@ -187,7 +198,6 @@ class TextAudioCollateMultiNSFsid:
|
||||
# dv[i] = row[5]
|
||||
sid[i] = row[5]
|
||||
|
||||
|
||||
return (
|
||||
phone_padded,
|
||||
phone_lengths,
|
||||
@ -198,9 +208,10 @@ class TextAudioCollateMultiNSFsid:
|
||||
wave_padded,
|
||||
wave_lengths,
|
||||
# dv
|
||||
sid
|
||||
sid,
|
||||
)
|
||||
|
||||
|
||||
class TextAudioLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, text pairs
|
||||
@ -210,14 +221,14 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, audiopaths_and_text, hparams):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self._filter()
|
||||
|
||||
def _filter(self):
|
||||
@ -229,12 +240,13 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
# spec_length = wav_length // hop_length
|
||||
audiopaths_and_text_new = []
|
||||
lengths = []
|
||||
for audiopath, text,dv in self.audiopaths_and_text:
|
||||
for audiopath, text, dv in self.audiopaths_and_text:
|
||||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||||
audiopaths_and_text_new.append([audiopath, text,dv])
|
||||
audiopaths_and_text_new.append([audiopath, text, dv])
|
||||
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
||||
self.audiopaths_and_text = audiopaths_and_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
@ -247,7 +259,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
|
||||
phone = self.get_labels(phone)
|
||||
spec, wav = self.get_audio(file)
|
||||
dv=self.get_sid(dv)
|
||||
dv = self.get_sid(dv)
|
||||
|
||||
len_phone = phone.size()[0]
|
||||
len_spec = spec.size()[-1]
|
||||
@ -257,7 +269,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
spec = spec[:, :len_min]
|
||||
wav = wav[:, :len_wav]
|
||||
phone = phone[:len_min, :]
|
||||
return (spec, wav, phone,dv)
|
||||
return (spec, wav, phone, dv)
|
||||
|
||||
def get_labels(self, phone):
|
||||
phone = np.load(phone)
|
||||
@ -282,10 +294,15 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
print (spec_filename,traceback.format_exc())
|
||||
spec = spectrogram_torch(audio_norm, self.filter_length,
|
||||
self.sampling_rate, self.hop_length, self.win_length,
|
||||
center=False)
|
||||
print(spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
else:
|
||||
@ -306,6 +323,8 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
||||
|
||||
class TextAudioCollate:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
@ -334,7 +353,9 @@ class TextAudioCollate:
|
||||
|
||||
max_phone_len = max([x[2].size(0) for x in batch])
|
||||
phone_lengths = torch.LongTensor(len(batch))
|
||||
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
|
||||
phone_padded = torch.FloatTensor(
|
||||
len(batch), max_phone_len, batch[0][2].shape[1]
|
||||
)
|
||||
phone_padded.zero_()
|
||||
sid = torch.LongTensor(len(batch))
|
||||
|
||||
@ -355,7 +376,6 @@ class TextAudioCollate:
|
||||
|
||||
sid[i] = row[3]
|
||||
|
||||
|
||||
return (
|
||||
phone_padded,
|
||||
phone_lengths,
|
||||
@ -363,9 +383,10 @@ class TextAudioCollate:
|
||||
spec_lengths,
|
||||
wave_padded,
|
||||
wave_lengths,
|
||||
sid
|
||||
sid,
|
||||
)
|
||||
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
"""
|
||||
Maintain similar input lengths in a batch.
|
||||
@ -402,7 +423,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
if idx_bucket != -1:
|
||||
buckets[idx_bucket].append(i)
|
||||
|
||||
for i in range(len(buckets) - 1, -1, -1):#
|
||||
for i in range(len(buckets) - 1, -1, -1): #
|
||||
if len(buckets[i]) == 0:
|
||||
buckets.pop(i)
|
||||
self.boundaries.pop(i + 1)
|
||||
|
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
|
@ -78,7 +78,8 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,return_complex=False
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
@ -139,8 +140,18 @@ def mel_spectrogram_torch(
|
||||
# normalized=False,
|
||||
# onesided=True,
|
||||
# )
|
||||
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
|
@ -1,101 +1,248 @@
|
||||
import torch,traceback,os,pdb
|
||||
import torch, traceback, os, pdb
|
||||
from collections import OrderedDict
|
||||
|
||||
def savee(ckpt,sr,if_f0,name,epoch):
|
||||
|
||||
def savee(ckpt, sr, if_f0, name, epoch):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if ("enc_q" in key): continue
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4], 109, 256, 40000]
|
||||
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4,4], 109, 256, 48000]
|
||||
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
||||
opt["info"] = "%sepoch"%epoch
|
||||
if sr == "40k":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 10, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4],
|
||||
109,
|
||||
256,
|
||||
40000,
|
||||
]
|
||||
elif sr == "48k":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 6, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
48000,
|
||||
]
|
||||
elif sr == "32k":
|
||||
opt["config"] = [
|
||||
513,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 4, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
32000,
|
||||
]
|
||||
opt["info"] = "%sepoch" % epoch
|
||||
opt["sr"] = sr
|
||||
opt["f0"] =if_f0
|
||||
torch.save(opt, "weights/%s.pth"%name)
|
||||
opt["f0"] = if_f0
|
||||
torch.save(opt, "weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
def show_info(path):
|
||||
try:
|
||||
a = torch.load(path, map_location="cpu")
|
||||
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s"%(a.get("info","None"),a.get("sr","None"),a.get("f0","None"),)
|
||||
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s" % (
|
||||
a.get("info", "None"),
|
||||
a.get("sr", "None"),
|
||||
a.get("f0", "None"),
|
||||
)
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
def extract_small_model(path,name,sr,if_f0,info):
|
||||
|
||||
def extract_small_model(path, name, sr, if_f0, info):
|
||||
try:
|
||||
ckpt = torch.load(path, map_location="cpu")
|
||||
if("model"in ckpt):ckpt=ckpt["model"]
|
||||
if "model" in ckpt:
|
||||
ckpt = ckpt["model"]
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if ("enc_q" in key): continue
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4], 109, 256, 40000]
|
||||
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4,4], 109, 256, 48000]
|
||||
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
||||
if(info==""):info="Extracted model."
|
||||
if sr == "40k":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 10, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4],
|
||||
109,
|
||||
256,
|
||||
40000,
|
||||
]
|
||||
elif sr == "48k":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 6, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
48000,
|
||||
]
|
||||
elif sr == "32k":
|
||||
opt["config"] = [
|
||||
513,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 4, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
32000,
|
||||
]
|
||||
if info == "":
|
||||
info = "Extracted model."
|
||||
opt["info"] = info
|
||||
opt["sr"] = sr
|
||||
opt["f0"] =int(if_f0)
|
||||
torch.save(opt, "weights/%s.pth"%name)
|
||||
opt["f0"] = int(if_f0)
|
||||
torch.save(opt, "weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
def change_info(path,info,name):
|
||||
|
||||
def change_info(path, info, name):
|
||||
try:
|
||||
ckpt = torch.load(path, map_location="cpu")
|
||||
ckpt["info"]=info
|
||||
if(name==""):name=os.path.basename(path)
|
||||
torch.save(ckpt, "weights/%s"%name)
|
||||
ckpt["info"] = info
|
||||
if name == "":
|
||||
name = os.path.basename(path)
|
||||
torch.save(ckpt, "weights/%s" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
def merge(path1,path2,alpha1,sr,f0,info,name):
|
||||
|
||||
def merge(path1, path2, alpha1, sr, f0, info, name):
|
||||
try:
|
||||
|
||||
def extract(ckpt):
|
||||
a = ckpt["model"]
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in a.keys():
|
||||
if ("enc_q" in key): continue
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = a[key]
|
||||
return opt
|
||||
|
||||
ckpt1 = torch.load(path1, map_location="cpu")
|
||||
ckpt2 = torch.load(path2, map_location="cpu")
|
||||
cfg = ckpt1["config"]
|
||||
if("model"in ckpt1): ckpt1=extract(ckpt1)
|
||||
else: ckpt1=ckpt1["weight"]
|
||||
if("model"in ckpt2): ckpt2=extract(ckpt2)
|
||||
else: ckpt2=ckpt2["weight"]
|
||||
if(sorted(list(ckpt1.keys()))!=sorted(list(ckpt2.keys()))):return "Fail to merge the models. The model architectures are not the same."
|
||||
if "model" in ckpt1:
|
||||
ckpt1 = extract(ckpt1)
|
||||
else:
|
||||
ckpt1 = ckpt1["weight"]
|
||||
if "model" in ckpt2:
|
||||
ckpt2 = extract(ckpt2)
|
||||
else:
|
||||
ckpt2 = ckpt2["weight"]
|
||||
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
|
||||
return "Fail to merge the models. The model architectures are not the same."
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt1.keys():
|
||||
# try:
|
||||
if(key=="emb_g.weight"and ckpt1[key].shape!=ckpt2[key].shape):
|
||||
min_shape0=min(ckpt1[key].shape[0],ckpt2[key].shape[0])
|
||||
opt["weight"][key] = (alpha1 * (ckpt1[key][:min_shape0].float()) + (1 - alpha1) * (ckpt2[key][:min_shape0].float())).half()
|
||||
else:
|
||||
opt["weight"][key] = (alpha1*(ckpt1[key].float())+(1-alpha1)*(ckpt2[key].float())).half()
|
||||
# except:
|
||||
# pdb.set_trace()
|
||||
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
|
||||
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
|
||||
opt["weight"][key] = (
|
||||
alpha1 * (ckpt1[key][:min_shape0].float())
|
||||
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
|
||||
).half()
|
||||
else:
|
||||
opt["weight"][key] = (
|
||||
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
|
||||
).half()
|
||||
# except:
|
||||
# pdb.set_trace()
|
||||
opt["config"] = cfg
|
||||
'''
|
||||
"""
|
||||
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
|
||||
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
|
||||
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
||||
'''
|
||||
opt["sr"]=sr
|
||||
opt["f0"]=1 if f0=="是"else 0
|
||||
opt["info"]=info
|
||||
torch.save(opt, "weights/%s.pth"%name)
|
||||
"""
|
||||
opt["sr"] = sr
|
||||
opt["f0"] = 1 if f0 == "是" else 0
|
||||
opt["info"] = info
|
||||
torch.save(opt, "weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
642
train/utils.py
642
train/utils.py
@ -1,4 +1,4 @@
|
||||
import os,traceback
|
||||
import os, traceback
|
||||
import glob
|
||||
import sys
|
||||
import argparse
|
||||
@ -14,44 +14,53 @@ MATPLOTLIB_FLAG = False
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
def load_checkpoint_d(checkpoint_path, combd,sbd, optimizer=None,load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
|
||||
##################
|
||||
def go(model,bkey):
|
||||
saved_state_dict = checkpoint_dict[bkey]
|
||||
if hasattr(model, 'module'):state_dict = model.module.state_dict()
|
||||
else:state_dict = model.state_dict()
|
||||
new_state_dict= {}
|
||||
for k, v in state_dict.items():#模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if(saved_state_dict[k].shape!=state_dict[k].shape):
|
||||
print("shape-%s-mismatch|need-%s|get-%s"%(k,state_dict[k].shape,saved_state_dict[k].shape))#
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k)#pretrain缺失的
|
||||
new_state_dict[k] = v#模型自带的随机值
|
||||
if hasattr(model, 'module'):
|
||||
model.module.load_state_dict(new_state_dict,strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict,strict=False)
|
||||
go(combd,"combd")
|
||||
go(sbd,"sbd")
|
||||
#############
|
||||
logger.info("Loaded model weights")
|
||||
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
iteration = checkpoint_dict['iteration']
|
||||
learning_rate = checkpoint_dict['learning_rate']
|
||||
if optimizer is not None and load_opt==1:###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})" .format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
##################
|
||||
def go(model, bkey):
|
||||
saved_state_dict = checkpoint_dict[bkey]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
"shape-%s-mismatch|need-%s|get-%s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
|
||||
go(combd, "combd")
|
||||
go(sbd, "sbd")
|
||||
#############
|
||||
logger.info("Loaded model weights")
|
||||
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None and load_opt == 1
|
||||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
||||
@ -83,303 +92,380 @@ def load_checkpoint_d(checkpoint_path, combd,sbd, optimizer=None,load_opt=1):
|
||||
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
||||
# checkpoint_path, iteration))
|
||||
# return model, optimizer, learning_rate, iteration
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None,load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
saved_state_dict = checkpoint_dict['model']
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict= {}
|
||||
for k, v in state_dict.items():#模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if(saved_state_dict[k].shape!=state_dict[k].shape):
|
||||
print("shape-%s-mismatch|need-%s|get-%s"%(k,state_dict[k].shape,saved_state_dict[k].shape))#
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k)#pretrain缺失的
|
||||
new_state_dict[k] = v#模型自带的随机值
|
||||
if hasattr(model, 'module'):
|
||||
model.module.load_state_dict(new_state_dict,strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict,strict=False)
|
||||
logger.info("Loaded model weights")
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
print(
|
||||
"shape-%s-mismatch|need-%s|get-%s"
|
||||
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
logger.info("Loaded model weights")
|
||||
|
||||
iteration = checkpoint_dict['iteration']
|
||||
learning_rate = checkpoint_dict['learning_rate']
|
||||
if optimizer is not None and load_opt==1:###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})" .format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None and load_opt == 1
|
||||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info("Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path))
|
||||
if hasattr(model, 'module'):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save({'model': state_dict,
|
||||
'iteration': iteration,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'learning_rate': learning_rate}, checkpoint_path)
|
||||
logger.info(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info("Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path))
|
||||
if hasattr(combd, 'module'): state_dict_combd = combd.module.state_dict()
|
||||
else:state_dict_combd = combd.state_dict()
|
||||
if hasattr(sbd, 'module'): state_dict_sbd = sbd.module.state_dict()
|
||||
else:state_dict_sbd = sbd.state_dict()
|
||||
torch.save({
|
||||
'combd': state_dict_combd,
|
||||
'sbd': state_dict_sbd,
|
||||
'iteration': iteration,
|
||||
'optimizer': optimizer.state_dict(),
|
||||
'learning_rate': learning_rate}, checkpoint_path)
|
||||
logger.info(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(combd, "module"):
|
||||
state_dict_combd = combd.module.state_dict()
|
||||
else:
|
||||
state_dict_combd = combd.state_dict()
|
||||
if hasattr(sbd, "module"):
|
||||
state_dict_sbd = sbd.module.state_dict()
|
||||
else:
|
||||
state_dict_sbd = sbd.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"combd": state_dict_combd,
|
||||
"sbd": state_dict_sbd,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats='HWC')
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
print(x)
|
||||
return x
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
print(x)
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10,2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||||
interpolation='none')
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger('matplotlib')
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||||
interpolation='none')
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = 'Decoder timestep'
|
||||
if info is not None:
|
||||
xlabel += '\n\n' + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel('Encoder timestep')
|
||||
plt.tight_layout()
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
with open(filename, encoding='utf-8') as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True):
|
||||
'''
|
||||
todo:
|
||||
结尾七人组:
|
||||
保存频率、总epoch done
|
||||
bs done
|
||||
pretrainG、pretrainD done
|
||||
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
||||
if_latest todo
|
||||
模型:if_f0 todo
|
||||
采样率:自动选择config done
|
||||
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
||||
"""
|
||||
todo:
|
||||
结尾七人组:
|
||||
保存频率、总epoch done
|
||||
bs done
|
||||
pretrainG、pretrainD done
|
||||
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
||||
if_latest todo
|
||||
模型:if_f0 todo
|
||||
采样率:自动选择config done
|
||||
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
||||
|
||||
-m:
|
||||
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
||||
-c不要了
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
||||
parser.add_argument('-se', '--save_every_epoch', type=int, required=True,help='checkpoint save frequency (epoch)')
|
||||
parser.add_argument('-te', '--total_epoch', type=int, required=True,help='total_epoch')
|
||||
parser.add_argument('-pg', '--pretrainG', type=str, default="",help='Pretrained Discriminator path')
|
||||
parser.add_argument('-pd', '--pretrainD', type=str, default="",help='Pretrained Generator path')
|
||||
parser.add_argument('-g', '--gpus', type=str, default="0",help='split by -')
|
||||
parser.add_argument('-bs', '--batch_size', type=int, required=True,help='batch size')
|
||||
parser.add_argument('-e', '--experiment_dir', type=str, required=True,help='experiment dir')#-m
|
||||
parser.add_argument('-sr', '--sample_rate', type=str, required=True,help='sample rate, 32k/40k/48k')
|
||||
parser.add_argument('-f0', '--if_f0', type=int, required=True,help='use f0 as one of the inputs of the model, 1 or 0')
|
||||
parser.add_argument('-l', '--if_latest', type=int, required=True,help='if only save the latest G/D pth file, 1 or 0')
|
||||
parser.add_argument('-c', '--if_cache_data_in_gpu', type=int, required=True,help='if caching the dataset in GPU memory, 1 or 0')
|
||||
-m:
|
||||
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
||||
-c不要了
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
||||
parser.add_argument(
|
||||
"-se",
|
||||
"--save_every_epoch",
|
||||
type=int,
|
||||
required=True,
|
||||
help="checkpoint save frequency (epoch)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
|
||||
)
|
||||
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
||||
parser.add_argument(
|
||||
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
||||
) # -m
|
||||
parser.add_argument(
|
||||
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-f0",
|
||||
"--if_f0",
|
||||
type=int,
|
||||
required=True,
|
||||
help="use f0 as one of the inputs of the model, 1 or 0",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--if_latest",
|
||||
type=int,
|
||||
required=True,
|
||||
help="if only save the latest G/D pth file, 1 or 0",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--if_cache_data_in_gpu",
|
||||
type=int,
|
||||
required=True,
|
||||
help="if caching the dataset in GPU memory, 1 or 0",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
name = args.experiment_dir
|
||||
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
||||
args = parser.parse_args()
|
||||
name = args.experiment_dir
|
||||
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
||||
|
||||
if not os.path.exists(experiment_dir):
|
||||
os.makedirs(experiment_dir)
|
||||
if not os.path.exists(experiment_dir):
|
||||
os.makedirs(experiment_dir)
|
||||
|
||||
config_path = "configs/%s.json"%args.sample_rate
|
||||
config_save_path = os.path.join(experiment_dir, "config.json")
|
||||
if init:
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
with open(config_save_path, "w") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
config_path = "configs/%s.json" % args.sample_rate
|
||||
config_save_path = os.path.join(experiment_dir, "config.json")
|
||||
if init:
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
with open(config_save_path, "w") as f:
|
||||
f.write(data)
|
||||
else:
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
||||
hparams.save_every_epoch = args.save_every_epoch
|
||||
hparams.name = name
|
||||
hparams.total_epoch = args.total_epoch
|
||||
hparams.pretrainG = args.pretrainG
|
||||
hparams.pretrainD = args.pretrainD
|
||||
hparams.gpus = args.gpus
|
||||
hparams.train.batch_size = args.batch_size
|
||||
hparams.sample_rate = args.sample_rate
|
||||
hparams.if_f0 = args.if_f0
|
||||
hparams.if_latest = args.if_latest
|
||||
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
||||
hparams.data.training_files = "%s/filelist.txt"%experiment_dir
|
||||
return hparams
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
||||
hparams.save_every_epoch = args.save_every_epoch
|
||||
hparams.name = name
|
||||
hparams.total_epoch = args.total_epoch
|
||||
hparams.pretrainG = args.pretrainG
|
||||
hparams.pretrainD = args.pretrainD
|
||||
hparams.gpus = args.gpus
|
||||
hparams.train.batch_size = args.batch_size
|
||||
hparams.sample_rate = args.sample_rate
|
||||
hparams.if_f0 = args.if_f0
|
||||
hparams.if_latest = args.if_latest
|
||||
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
||||
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams =HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams =HParams(**config)
|
||||
return hparams
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
))
|
||||
return
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warn(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]))
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warn(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams():
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
||||
|
@ -1,12 +1,15 @@
|
||||
import sys,os
|
||||
now_dir=os.getcwd()
|
||||
sys.path.append(os.path.join(now_dir,"train"))
|
||||
import sys, os
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(os.path.join(now_dir, "train"))
|
||||
import utils
|
||||
|
||||
hps = utils.get_hparams()
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=hps.gpus.replace("-",",")
|
||||
n_gpus=len(hps.gpus.split("-"))
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
||||
n_gpus = len(hps.gpus.split("-"))
|
||||
from random import shuffle
|
||||
import traceback,json,argparse,itertools,math,torch,pdb
|
||||
import traceback, json, argparse, itertools, math, torch, pdb
|
||||
|
||||
torch.backends.cudnn.deterministic = False
|
||||
torch.backends.cudnn.benchmark = False
|
||||
from torch import nn, optim
|
||||
@ -20,9 +23,16 @@ from torch.cuda.amp import autocast, GradScaler
|
||||
from infer_pack import commons
|
||||
|
||||
from time import time as ttime
|
||||
from data_utils import TextAudioLoaderMultiNSFsid,TextAudioLoader, TextAudioCollateMultiNSFsid,TextAudioCollate, DistributedBucketSampler
|
||||
from data_utils import (
|
||||
TextAudioLoaderMultiNSFsid,
|
||||
TextAudioLoader,
|
||||
TextAudioCollateMultiNSFsid,
|
||||
TextAudioCollate,
|
||||
DistributedBucketSampler,
|
||||
)
|
||||
from infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid,SynthesizerTrnMs256NSFsid_nono,
|
||||
SynthesizerTrnMs256NSFsid,
|
||||
SynthesizerTrnMs256NSFsid_nono,
|
||||
MultiPeriodDiscriminator,
|
||||
)
|
||||
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
||||
@ -32,13 +42,11 @@ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
||||
global_step = 0
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
# n_gpus = torch.cuda.device_count()
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = "5555"
|
||||
|
||||
|
||||
mp.spawn(
|
||||
run,
|
||||
nprocs=n_gpus,
|
||||
@ -62,13 +70,16 @@ def run(rank, n_gpus, hps):
|
||||
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
|
||||
)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
if torch.cuda.is_available(): torch.cuda.set_device(rank)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
if (hps.if_f0 == 1):train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
|
||||
else:train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
||||
if hps.if_f0 == 1:
|
||||
train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
|
||||
else:
|
||||
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
|
||||
train_sampler = DistributedBucketSampler(
|
||||
train_dataset,
|
||||
hps.train.batch_size*n_gpus,
|
||||
hps.train.batch_size * n_gpus,
|
||||
# [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200,1400], # 16s
|
||||
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
|
||||
num_replicas=n_gpus,
|
||||
@ -77,8 +88,10 @@ def run(rank, n_gpus, hps):
|
||||
)
|
||||
# It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.
|
||||
# num_workers=8 -> num_workers=4
|
||||
if (hps.if_f0 == 1):collate_fn = TextAudioCollateMultiNSFsid()
|
||||
else:collate_fn = TextAudioCollate()
|
||||
if hps.if_f0 == 1:
|
||||
collate_fn = TextAudioCollateMultiNSFsid()
|
||||
else:
|
||||
collate_fn = TextAudioCollate()
|
||||
train_loader = DataLoader(
|
||||
train_dataset,
|
||||
num_workers=4,
|
||||
@ -89,13 +102,26 @@ def run(rank, n_gpus, hps):
|
||||
persistent_workers=True,
|
||||
prefetch_factor=8,
|
||||
)
|
||||
if(hps.if_f0==1):
|
||||
net_g = SynthesizerTrnMs256NSFsid(hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,**hps.model,is_half=hps.train.fp16_run,sr=hps.sample_rate)
|
||||
if hps.if_f0 == 1:
|
||||
net_g = SynthesizerTrnMs256NSFsid(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
**hps.model,
|
||||
is_half=hps.train.fp16_run,
|
||||
sr=hps.sample_rate,
|
||||
)
|
||||
else:
|
||||
net_g = SynthesizerTrnMs256NSFsid_nono(hps.data.filter_length // 2 + 1,hps.train.segment_size // hps.data.hop_length,**hps.model,is_half=hps.train.fp16_run)
|
||||
if torch.cuda.is_available(): net_g = net_g.cuda(rank)
|
||||
net_g = SynthesizerTrnMs256NSFsid_nono(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
**hps.model,
|
||||
is_half=hps.train.fp16_run,
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
net_g = net_g.cuda(rank)
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
|
||||
if torch.cuda.is_available(): net_d = net_d.cuda(rank)
|
||||
if torch.cuda.is_available():
|
||||
net_d = net_d.cuda(rank)
|
||||
optim_g = torch.optim.AdamW(
|
||||
net_g.parameters(),
|
||||
hps.train.learning_rate,
|
||||
@ -110,30 +136,42 @@ def run(rank, n_gpus, hps):
|
||||
)
|
||||
# net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
if torch.cuda.is_available():
|
||||
if torch.cuda.is_available():
|
||||
net_g = DDP(net_g, device_ids=[rank])
|
||||
net_d = DDP(net_d, device_ids=[rank])
|
||||
else:
|
||||
net_g = DDP(net_g)
|
||||
net_d = DDP(net_d)
|
||||
|
||||
try:#如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d) # D多半加载没事
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
|
||||
) # D多半加载没事
|
||||
if rank == 0:
|
||||
logger.info("loaded D")
|
||||
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
||||
)
|
||||
global_step = (epoch_str - 1) * len(train_loader)
|
||||
# epoch_str = 1
|
||||
# global_step = 0
|
||||
except:#如果首次不能加载,加载pretrain
|
||||
except: # 如果首次不能加载,加载pretrain
|
||||
traceback.print_exc()
|
||||
epoch_str = 1
|
||||
global_step = 0
|
||||
if rank == 0:
|
||||
logger.info("loaded pretrained %s %s"%(hps.pretrainG,hps.pretrainD))
|
||||
print(net_g.module.load_state_dict(torch.load(hps.pretrainG,map_location="cpu")["model"]))##测试不加载优化器
|
||||
print(net_d.module.load_state_dict(torch.load(hps.pretrainD,map_location="cpu")["model"]))
|
||||
logger.info("loaded pretrained %s %s" % (hps.pretrainG, hps.pretrainD))
|
||||
print(
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.pretrainG, map_location="cpu")["model"]
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
print(
|
||||
net_d.module.load_state_dict(
|
||||
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
||||
)
|
||||
)
|
||||
|
||||
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
||||
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
||||
@ -144,7 +182,7 @@ def run(rank, n_gpus, hps):
|
||||
|
||||
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||
|
||||
cache=[]
|
||||
cache = []
|
||||
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||
if rank == 0:
|
||||
train_and_evaluate(
|
||||
@ -157,7 +195,8 @@ def run(rank, n_gpus, hps):
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
logger,
|
||||
[writer, writer_eval],cache
|
||||
[writer, writer_eval],
|
||||
cache,
|
||||
)
|
||||
else:
|
||||
train_and_evaluate(
|
||||
@ -170,14 +209,15 @@ def run(rank, n_gpus, hps):
|
||||
scaler,
|
||||
[train_loader, None],
|
||||
None,
|
||||
None,cache
|
||||
None,
|
||||
cache,
|
||||
)
|
||||
scheduler_g.step()
|
||||
scheduler_d.step()
|
||||
|
||||
|
||||
def train_and_evaluate(
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers,cache
|
||||
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, cache
|
||||
):
|
||||
net_g, net_d = nets
|
||||
optim_g, optim_d = optims
|
||||
@ -190,168 +230,90 @@ def train_and_evaluate(
|
||||
|
||||
net_g.train()
|
||||
net_d.train()
|
||||
if(cache==[]or hps.if_cache_data_in_gpu==False):#第一个epoch把cache全部填满训练集
|
||||
if cache == [] or hps.if_cache_data_in_gpu == False: # 第一个epoch把cache全部填满训练集
|
||||
# print("caching")
|
||||
for batch_idx, info in enumerate(train_loader):
|
||||
if (hps.if_f0 == 1):phone,phone_lengths,pitch,pitchf,spec,spec_lengths,wave,wave_lengths,sid=info
|
||||
else:phone,phone_lengths,spec,spec_lengths,wave,wave_lengths,sid=info
|
||||
if hps.if_f0 == 1:
|
||||
(
|
||||
phone,
|
||||
phone_lengths,
|
||||
pitch,
|
||||
pitchf,
|
||||
spec,
|
||||
spec_lengths,
|
||||
wave,
|
||||
wave_lengths,
|
||||
sid,
|
||||
) = info
|
||||
else:
|
||||
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
|
||||
if torch.cuda.is_available():
|
||||
phone, phone_lengths = phone.cuda(rank, non_blocking=True), phone_lengths.cuda(rank, non_blocking=True )
|
||||
if (hps.if_f0 == 1):pitch,pitchf = pitch.cuda(rank, non_blocking=True),pitchf.cuda(rank, non_blocking=True)
|
||||
phone, phone_lengths = phone.cuda(
|
||||
rank, non_blocking=True
|
||||
), phone_lengths.cuda(rank, non_blocking=True)
|
||||
if hps.if_f0 == 1:
|
||||
pitch, pitchf = pitch.cuda(rank, non_blocking=True), pitchf.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
sid = sid.cuda(rank, non_blocking=True)
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
||||
wave, wave_lengths = wave.cuda(rank, non_blocking=True), wave_lengths.cuda(rank, non_blocking=True)
|
||||
if(hps.if_cache_data_in_gpu==True):
|
||||
if (hps.if_f0 == 1):cache.append((batch_idx, (phone,phone_lengths,pitch,pitchf,spec,spec_lengths,wave,wave_lengths ,sid)))
|
||||
else:cache.append((batch_idx, (phone,phone_lengths,spec,spec_lengths,wave,wave_lengths ,sid)))
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
if (hps.if_f0 == 1):y_hat,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(phone, phone_lengths, pitch,pitchf, spec, spec_lengths,sid)
|
||||
else:y_hat,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(phone, phone_lengths, spec, spec_lengths,sid)
|
||||
mel = spec_to_mel_torch(spec,hps.data.filter_length,hps.data.n_mel_channels,hps.data.sampling_rate,hps.data.mel_fmin,hps.data.mel_fmax,)
|
||||
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
||||
with autocast(enabled=False):
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.float().squeeze(1),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
if(hps.train.fp16_run==True):
|
||||
y_hat_mel=y_hat_mel.half()
|
||||
wave = commons.slice_segments(
|
||||
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
|
||||
) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
||||
y_d_hat_r, y_d_hat_g
|
||||
)
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc).backward()
|
||||
scaler.unscale_(optim_d)
|
||||
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
||||
scaler.step(optim_d)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
# Generator
|
||||
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
|
||||
with autocast(enabled=False):
|
||||
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]["lr"]
|
||||
logger.info(
|
||||
"Train Epoch: {} [{:.0f}%]".format(
|
||||
epoch, 100.0 * batch_idx / len(train_loader)
|
||||
spec, spec_lengths = spec.cuda(
|
||||
rank, non_blocking=True
|
||||
), spec_lengths.cuda(rank, non_blocking=True)
|
||||
wave, wave_lengths = wave.cuda(
|
||||
rank, non_blocking=True
|
||||
), wave_lengths.cuda(rank, non_blocking=True)
|
||||
if hps.if_cache_data_in_gpu == True:
|
||||
if hps.if_f0 == 1:
|
||||
cache.append(
|
||||
(
|
||||
batch_idx,
|
||||
(
|
||||
phone,
|
||||
phone_lengths,
|
||||
pitch,
|
||||
pitchf,
|
||||
spec,
|
||||
spec_lengths,
|
||||
wave,
|
||||
wave_lengths,
|
||||
sid,
|
||||
),
|
||||
)
|
||||
)
|
||||
# Amor For Tensorboard display
|
||||
if loss_mel > 50:
|
||||
loss_mel = 50
|
||||
if loss_kl > 5:
|
||||
loss_kl = 5
|
||||
|
||||
logger.info([global_step, lr])
|
||||
logger.info(
|
||||
f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
||||
else:
|
||||
cache.append(
|
||||
(
|
||||
batch_idx,
|
||||
(
|
||||
phone,
|
||||
phone_lengths,
|
||||
spec,
|
||||
spec_lengths,
|
||||
wave,
|
||||
wave_lengths,
|
||||
sid,
|
||||
),
|
||||
)
|
||||
)
|
||||
scalar_dict = {
|
||||
"loss/g/total": loss_gen_all,
|
||||
"loss/d/total": loss_disc,
|
||||
"learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d,
|
||||
"grad_norm_g": grad_norm_g,
|
||||
}
|
||||
scalar_dict.update(
|
||||
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
|
||||
)
|
||||
|
||||
scalar_dict.update(
|
||||
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
||||
)
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
global_step += 1
|
||||
# if global_step % hps.train.eval_interval == 0:
|
||||
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
||||
if(hps.if_latest==0):
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "G_{}.pth".format(2333333)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
||||
)
|
||||
|
||||
else:#后续的epoch直接使用打乱的cache
|
||||
shuffle(cache)
|
||||
# print("using cache")
|
||||
for batch_idx, info in cache:
|
||||
if (hps.if_f0 == 1):phone,phone_lengths,pitch,pitchf,spec,spec_lengths,wave,wave_lengths,sid=info
|
||||
else:phone,phone_lengths,spec,spec_lengths,wave,wave_lengths,sid=info
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
if (hps.if_f0 == 1):y_hat,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(phone, phone_lengths, pitch,pitchf, spec, spec_lengths,sid)
|
||||
else:y_hat,ids_slice,x_mask,z_mask,(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(phone, phone_lengths, spec, spec_lengths,sid)
|
||||
if hps.if_f0 == 1:
|
||||
(
|
||||
y_hat,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
) = net_g(
|
||||
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
|
||||
)
|
||||
else:
|
||||
(
|
||||
y_hat,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
@ -374,8 +336,200 @@ def train_and_evaluate(
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
if(hps.train.fp16_run==True):
|
||||
y_hat_mel=y_hat_mel.half()
|
||||
if hps.train.fp16_run == True:
|
||||
y_hat_mel = y_hat_mel.half()
|
||||
wave = commons.slice_segments(
|
||||
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
|
||||
) # slice
|
||||
|
||||
# Discriminator
|
||||
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
|
||||
with autocast(enabled=False):
|
||||
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
||||
y_d_hat_r, y_d_hat_g
|
||||
)
|
||||
optim_d.zero_grad()
|
||||
scaler.scale(loss_disc).backward()
|
||||
scaler.unscale_(optim_d)
|
||||
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
||||
scaler.step(optim_d)
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
# Generator
|
||||
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
|
||||
with autocast(enabled=False):
|
||||
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
||||
optim_g.zero_grad()
|
||||
scaler.scale(loss_gen_all).backward()
|
||||
scaler.unscale_(optim_g)
|
||||
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
||||
scaler.step(optim_g)
|
||||
scaler.update()
|
||||
|
||||
if rank == 0:
|
||||
if global_step % hps.train.log_interval == 0:
|
||||
lr = optim_g.param_groups[0]["lr"]
|
||||
logger.info(
|
||||
"Train Epoch: {} [{:.0f}%]".format(
|
||||
epoch, 100.0 * batch_idx / len(train_loader)
|
||||
)
|
||||
)
|
||||
# Amor For Tensorboard display
|
||||
if loss_mel > 50:
|
||||
loss_mel = 50
|
||||
if loss_kl > 5:
|
||||
loss_kl = 5
|
||||
|
||||
logger.info([global_step, lr])
|
||||
logger.info(
|
||||
f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
||||
)
|
||||
scalar_dict = {
|
||||
"loss/g/total": loss_gen_all,
|
||||
"loss/d/total": loss_disc,
|
||||
"learning_rate": lr,
|
||||
"grad_norm_d": grad_norm_d,
|
||||
"grad_norm_g": grad_norm_g,
|
||||
}
|
||||
scalar_dict.update(
|
||||
{
|
||||
"loss/g/fm": loss_fm,
|
||||
"loss/g/mel": loss_mel,
|
||||
"loss/g/kl": loss_kl,
|
||||
}
|
||||
)
|
||||
|
||||
scalar_dict.update(
|
||||
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{
|
||||
"loss/d_r/{}".format(i): v
|
||||
for i, v in enumerate(losses_disc_r)
|
||||
}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{
|
||||
"loss/d_g/{}".format(i): v
|
||||
for i, v in enumerate(losses_disc_g)
|
||||
}
|
||||
)
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
y_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
||||
y_hat_mel[0].data.cpu().numpy()
|
||||
),
|
||||
"all/mel": utils.plot_spectrogram_to_numpy(
|
||||
mel[0].data.cpu().numpy()
|
||||
),
|
||||
}
|
||||
utils.summarize(
|
||||
writer=writer,
|
||||
global_step=global_step,
|
||||
images=image_dict,
|
||||
scalars=scalar_dict,
|
||||
)
|
||||
global_step += 1
|
||||
# if global_step % hps.train.eval_interval == 0:
|
||||
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
||||
if hps.if_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
||||
)
|
||||
else:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "G_{}.pth".format(2333333)),
|
||||
)
|
||||
utils.save_checkpoint(
|
||||
net_d,
|
||||
optim_d,
|
||||
hps.train.learning_rate,
|
||||
epoch,
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
||||
)
|
||||
|
||||
else: # 后续的epoch直接使用打乱的cache
|
||||
shuffle(cache)
|
||||
# print("using cache")
|
||||
for batch_idx, info in cache:
|
||||
if hps.if_f0 == 1:
|
||||
(
|
||||
phone,
|
||||
phone_lengths,
|
||||
pitch,
|
||||
pitchf,
|
||||
spec,
|
||||
spec_lengths,
|
||||
wave,
|
||||
wave_lengths,
|
||||
sid,
|
||||
) = info
|
||||
else:
|
||||
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
if hps.if_f0 == 1:
|
||||
(
|
||||
y_hat,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
) = net_g(
|
||||
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid
|
||||
)
|
||||
else:
|
||||
(
|
||||
y_hat,
|
||||
ids_slice,
|
||||
x_mask,
|
||||
z_mask,
|
||||
(z, z_p, m_p, logs_p, m_q, logs_q),
|
||||
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
|
||||
mel = spec_to_mel_torch(
|
||||
spec,
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
y_mel = commons.slice_segments(
|
||||
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
||||
)
|
||||
with autocast(enabled=False):
|
||||
y_hat_mel = mel_spectrogram_torch(
|
||||
y_hat.float().squeeze(1),
|
||||
hps.data.filter_length,
|
||||
hps.data.n_mel_channels,
|
||||
hps.data.sampling_rate,
|
||||
hps.data.hop_length,
|
||||
hps.data.win_length,
|
||||
hps.data.mel_fmin,
|
||||
hps.data.mel_fmax,
|
||||
)
|
||||
if hps.train.fp16_run == True:
|
||||
y_hat_mel = y_hat_mel.half()
|
||||
wave = commons.slice_segments(
|
||||
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
|
||||
) # slice
|
||||
@ -435,17 +589,27 @@ def train_and_evaluate(
|
||||
"grad_norm_g": grad_norm_g,
|
||||
}
|
||||
scalar_dict.update(
|
||||
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
|
||||
{
|
||||
"loss/g/fm": loss_fm,
|
||||
"loss/g/mel": loss_mel,
|
||||
"loss/g/kl": loss_kl,
|
||||
}
|
||||
)
|
||||
|
||||
scalar_dict.update(
|
||||
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
||||
{
|
||||
"loss/d_r/{}".format(i): v
|
||||
for i, v in enumerate(losses_disc_r)
|
||||
}
|
||||
)
|
||||
scalar_dict.update(
|
||||
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
||||
{
|
||||
"loss/d_g/{}".format(i): v
|
||||
for i, v in enumerate(losses_disc_g)
|
||||
}
|
||||
)
|
||||
image_dict = {
|
||||
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
||||
@ -467,7 +631,7 @@ def train_and_evaluate(
|
||||
global_step += 1
|
||||
# if global_step % hps.train.eval_interval == 0:
|
||||
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
||||
if(hps.if_latest==0):
|
||||
if hps.if_latest == 0:
|
||||
utils.save_checkpoint(
|
||||
net_g,
|
||||
optim_g,
|
||||
@ -498,15 +662,20 @@ def train_and_evaluate(
|
||||
os.path.join(hps.model_dir, "D_{}.pth".format(2333333)),
|
||||
)
|
||||
|
||||
|
||||
if rank == 0:
|
||||
logger.info("====> Epoch: {}".format(epoch))
|
||||
if(epoch>=hps.total_epoch and rank == 0):
|
||||
if epoch >= hps.total_epoch and rank == 0:
|
||||
logger.info("Training is done. The program is closed.")
|
||||
from process_ckpt import savee#def savee(ckpt,sr,if_f0,name,epoch):
|
||||
if hasattr(net_g, 'module'):ckpt = net_g.module.state_dict()
|
||||
else:ckpt = net_g.state_dict()
|
||||
logger.info("saving final ckpt:%s"%(savee(ckpt,hps.sample_rate,hps.if_f0,hps.name,epoch)))
|
||||
from process_ckpt import savee # def savee(ckpt,sr,if_f0,name,epoch):
|
||||
|
||||
if hasattr(net_g, "module"):
|
||||
ckpt = net_g.module.state_dict()
|
||||
else:
|
||||
ckpt = net_g.state_dict()
|
||||
logger.info(
|
||||
"saving final ckpt:%s"
|
||||
% (savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch))
|
||||
)
|
||||
os._exit(2333333)
|
||||
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import sys,os,multiprocessing
|
||||
now_dir=os.getcwd()
|
||||
import sys, os, multiprocessing
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
inp_root = sys.argv[1]
|
||||
@ -7,15 +8,17 @@ sr = int(sys.argv[2])
|
||||
n_p = int(sys.argv[3])
|
||||
exp_dir = sys.argv[4]
|
||||
noparallel = sys.argv[5] == "True"
|
||||
import numpy as np,os,traceback
|
||||
import numpy as np, os, traceback
|
||||
from slicer2 import Slicer
|
||||
import librosa,traceback
|
||||
from scipy.io import wavfile
|
||||
import librosa, traceback
|
||||
from scipy.io import wavfile
|
||||
import multiprocessing
|
||||
from my_utils import load_audio
|
||||
|
||||
mutex = multiprocessing.Lock()
|
||||
f = open("%s/preprocess.log"%exp_dir, "a+")
|
||||
f = open("%s/preprocess.log" % exp_dir, "a+")
|
||||
|
||||
|
||||
def println(strr):
|
||||
mutex.acquire()
|
||||
print(strr)
|
||||
@ -23,81 +26,101 @@ def println(strr):
|
||||
f.flush()
|
||||
mutex.release()
|
||||
|
||||
class PreProcess():
|
||||
def __init__(self,sr,exp_dir):
|
||||
|
||||
class PreProcess:
|
||||
def __init__(self, sr, exp_dir):
|
||||
self.slicer = Slicer(
|
||||
sr=sr,
|
||||
threshold=-32,
|
||||
min_length=800,
|
||||
min_interval=400,
|
||||
hop_size=15,
|
||||
max_sil_kept=150
|
||||
max_sil_kept=150,
|
||||
)
|
||||
self.sr=sr
|
||||
self.per=3.7
|
||||
self.overlap=0.3
|
||||
self.tail=self.per+self.overlap
|
||||
self.max=0.95
|
||||
self.alpha=0.8
|
||||
self.exp_dir=exp_dir
|
||||
self.gt_wavs_dir="%s/0_gt_wavs"%exp_dir
|
||||
self.wavs16k_dir="%s/1_16k_wavs"%exp_dir
|
||||
os.makedirs(self.exp_dir,exist_ok=True)
|
||||
os.makedirs(self.gt_wavs_dir,exist_ok=True)
|
||||
os.makedirs(self.wavs16k_dir,exist_ok=True)
|
||||
self.sr = sr
|
||||
self.per = 3.7
|
||||
self.overlap = 0.3
|
||||
self.tail = self.per + self.overlap
|
||||
self.max = 0.95
|
||||
self.alpha = 0.8
|
||||
self.exp_dir = exp_dir
|
||||
self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
|
||||
self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
|
||||
os.makedirs(self.exp_dir, exist_ok=True)
|
||||
os.makedirs(self.gt_wavs_dir, exist_ok=True)
|
||||
os.makedirs(self.wavs16k_dir, exist_ok=True)
|
||||
|
||||
def norm_write(self,tmp_audio,idx0,idx1):
|
||||
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (1 - self.alpha) * tmp_audio
|
||||
wavfile.write("%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1), self.sr, (tmp_audio*32768).astype(np.int16))
|
||||
def norm_write(self, tmp_audio, idx0, idx1):
|
||||
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (
|
||||
1 - self.alpha
|
||||
) * tmp_audio
|
||||
wavfile.write(
|
||||
"%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
|
||||
self.sr,
|
||||
(tmp_audio * 32768).astype(np.int16),
|
||||
)
|
||||
tmp_audio = librosa.resample(tmp_audio, orig_sr=self.sr, target_sr=16000)
|
||||
wavfile.write("%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1), 16000, (tmp_audio*32768).astype(np.int16))
|
||||
wavfile.write(
|
||||
"%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
|
||||
16000,
|
||||
(tmp_audio * 32768).astype(np.int16),
|
||||
)
|
||||
|
||||
def pipeline(self,path, idx0):
|
||||
def pipeline(self, path, idx0):
|
||||
try:
|
||||
audio = load_audio(path,self.sr)
|
||||
idx1=0
|
||||
audio = load_audio(path, self.sr)
|
||||
idx1 = 0
|
||||
for audio in self.slicer.slice(audio):
|
||||
i = 0
|
||||
while (1):
|
||||
while 1:
|
||||
start = int(self.sr * (self.per - self.overlap) * i)
|
||||
i += 1
|
||||
if (len(audio[start:]) > self.tail * self.sr):
|
||||
tmp_audio = audio[start:start + int(self.per * self.sr)]
|
||||
self.norm_write(tmp_audio,idx0,idx1)
|
||||
if len(audio[start:]) > self.tail * self.sr:
|
||||
tmp_audio = audio[start : start + int(self.per * self.sr)]
|
||||
self.norm_write(tmp_audio, idx0, idx1)
|
||||
idx1 += 1
|
||||
else:
|
||||
tmp_audio = audio[start:]
|
||||
break
|
||||
self.norm_write(tmp_audio, idx0, idx1)
|
||||
println("%s->Suc."%path)
|
||||
println("%s->Suc." % path)
|
||||
except:
|
||||
println("%s->%s"%(path,traceback.format_exc()))
|
||||
println("%s->%s" % (path, traceback.format_exc()))
|
||||
|
||||
def pipeline_mp(self,infos):
|
||||
def pipeline_mp(self, infos):
|
||||
for path, idx0 in infos:
|
||||
self.pipeline(path,idx0)
|
||||
self.pipeline(path, idx0)
|
||||
|
||||
def pipeline_mp_inp_dir(self,inp_root,n_p):
|
||||
def pipeline_mp_inp_dir(self, inp_root, n_p):
|
||||
try:
|
||||
infos = [("%s/%s" % (inp_root, name), idx) for idx, name in enumerate(sorted(list(os.listdir(inp_root))))]
|
||||
infos = [
|
||||
("%s/%s" % (inp_root, name), idx)
|
||||
for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
|
||||
]
|
||||
if noparallel:
|
||||
for i in range(n_p): self.pipeline_mp(infos[i::n_p])
|
||||
else:
|
||||
ps=[]
|
||||
for i in range(n_p):
|
||||
p=multiprocessing.Process(target=self.pipeline_mp,args=(infos[i::n_p],))
|
||||
self.pipeline_mp(infos[i::n_p])
|
||||
else:
|
||||
ps = []
|
||||
for i in range(n_p):
|
||||
p = multiprocessing.Process(
|
||||
target=self.pipeline_mp, args=(infos[i::n_p],)
|
||||
)
|
||||
p.start()
|
||||
ps.append(p)
|
||||
for p in ps:p.join()
|
||||
for p in ps:
|
||||
p.join()
|
||||
except:
|
||||
println("Fail. %s"%traceback.format_exc())
|
||||
println("Fail. %s" % traceback.format_exc())
|
||||
|
||||
|
||||
def preprocess_trainset(inp_root, sr, n_p, exp_dir):
|
||||
pp=PreProcess(sr,exp_dir)
|
||||
pp = PreProcess(sr, exp_dir)
|
||||
println("start preprocess")
|
||||
println(sys.argv)
|
||||
pp.pipeline_mp_inp_dir(inp_root,n_p)
|
||||
pp.pipeline_mp_inp_dir(inp_root, n_p)
|
||||
println("end preprocess")
|
||||
|
||||
if __name__=='__main__':
|
||||
|
||||
if __name__ == "__main__":
|
||||
preprocess_trainset(inp_root, sr, n_p, exp_dir)
|
||||
|
@ -10,7 +10,6 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||
|
||||
def __init__(self, patch_list):
|
||||
self.patch_list = patch_list
|
||||
|
||||
@ -21,7 +20,7 @@ class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||
path = self.patch_list[idx]
|
||||
data = np.load(path)
|
||||
|
||||
X, y = data['X'], data['y']
|
||||
X, y = data["X"], data["y"]
|
||||
|
||||
X_mag = np.abs(X)
|
||||
y_mag = np.abs(y)
|
||||
@ -30,16 +29,22 @@ class VocalRemoverValidationSet(torch.utils.data.Dataset):
|
||||
|
||||
|
||||
def make_pair(mix_dir, inst_dir):
|
||||
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
|
||||
input_exts = [".wav", ".m4a", ".mp3", ".mp4", ".flac"]
|
||||
|
||||
X_list = sorted([
|
||||
os.path.join(mix_dir, fname)
|
||||
for fname in os.listdir(mix_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts])
|
||||
y_list = sorted([
|
||||
os.path.join(inst_dir, fname)
|
||||
for fname in os.listdir(inst_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts])
|
||||
X_list = sorted(
|
||||
[
|
||||
os.path.join(mix_dir, fname)
|
||||
for fname in os.listdir(mix_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts
|
||||
]
|
||||
)
|
||||
y_list = sorted(
|
||||
[
|
||||
os.path.join(inst_dir, fname)
|
||||
for fname in os.listdir(inst_dir)
|
||||
if os.path.splitext(fname)[1] in input_exts
|
||||
]
|
||||
)
|
||||
|
||||
filelist = list(zip(X_list, y_list))
|
||||
|
||||
@ -47,10 +52,11 @@ def make_pair(mix_dir, inst_dir):
|
||||
|
||||
|
||||
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
||||
if split_mode == 'random':
|
||||
if split_mode == "random":
|
||||
filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'mixtures'),
|
||||
os.path.join(dataset_dir, 'instruments'))
|
||||
os.path.join(dataset_dir, "mixtures"),
|
||||
os.path.join(dataset_dir, "instruments"),
|
||||
)
|
||||
|
||||
random.shuffle(filelist)
|
||||
|
||||
@ -60,19 +66,23 @@ def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
|
||||
val_filelist = filelist[-val_size:]
|
||||
else:
|
||||
train_filelist = [
|
||||
pair for pair in filelist
|
||||
if list(pair) not in val_filelist]
|
||||
elif split_mode == 'subdirs':
|
||||
pair for pair in filelist if list(pair) not in val_filelist
|
||||
]
|
||||
elif split_mode == "subdirs":
|
||||
if len(val_filelist) != 0:
|
||||
raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
|
||||
raise ValueError(
|
||||
"The `val_filelist` option is not available in `subdirs` mode"
|
||||
)
|
||||
|
||||
train_filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'training/mixtures'),
|
||||
os.path.join(dataset_dir, 'training/instruments'))
|
||||
os.path.join(dataset_dir, "training/mixtures"),
|
||||
os.path.join(dataset_dir, "training/instruments"),
|
||||
)
|
||||
|
||||
val_filelist = make_pair(
|
||||
os.path.join(dataset_dir, 'validation/mixtures'),
|
||||
os.path.join(dataset_dir, 'validation/instruments'))
|
||||
os.path.join(dataset_dir, "validation/mixtures"),
|
||||
os.path.join(dataset_dir, "validation/instruments"),
|
||||
)
|
||||
|
||||
return train_filelist, val_filelist
|
||||
|
||||
@ -81,7 +91,9 @@ def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
|
||||
perm = np.random.permutation(len(X))
|
||||
for i, idx in enumerate(tqdm(perm)):
|
||||
if np.random.uniform() < reduction_rate:
|
||||
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
|
||||
y[idx] = spec_utils.reduce_vocal_aggressively(
|
||||
X[idx], y[idx], reduction_mask
|
||||
)
|
||||
|
||||
if np.random.uniform() < 0.5:
|
||||
# swap channel
|
||||
@ -116,10 +128,8 @@ def make_padding(width, cropsize, offset):
|
||||
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
|
||||
len_dataset = patches * len(filelist)
|
||||
|
||||
X_dataset = np.zeros(
|
||||
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
y_dataset = np.zeros(
|
||||
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
X_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
y_dataset = np.zeros((len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
|
||||
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
|
||||
@ -127,22 +137,24 @@ def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset
|
||||
X, y = X / coef, y / coef
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
||||
|
||||
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
|
||||
ends = starts + cropsize
|
||||
for j in range(patches):
|
||||
idx = i * patches + j
|
||||
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
|
||||
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
|
||||
X_dataset[idx] = X_pad[:, :, starts[j] : ends[j]]
|
||||
y_dataset[idx] = y_pad[:, :, starts[j] : ends[j]]
|
||||
|
||||
return X_dataset, y_dataset
|
||||
|
||||
|
||||
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
||||
patch_list = []
|
||||
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
|
||||
patch_dir = "cs{}_sr{}_hl{}_nf{}_of{}".format(
|
||||
cropsize, sr, hop_length, n_fft, offset
|
||||
)
|
||||
os.makedirs(patch_dir, exist_ok=True)
|
||||
|
||||
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
|
||||
@ -153,18 +165,19 @@ def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
|
||||
X, y = X / coef, y / coef
|
||||
|
||||
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
|
||||
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode="constant")
|
||||
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode="constant")
|
||||
|
||||
len_dataset = int(np.ceil(X.shape[2] / roi_size))
|
||||
for j in range(len_dataset):
|
||||
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
|
||||
outpath = os.path.join(patch_dir, "{}_p{}.npz".format(basename, j))
|
||||
start = j * roi_size
|
||||
if not os.path.exists(outpath):
|
||||
np.savez(
|
||||
outpath,
|
||||
X=X_pad[:, :, start:start + cropsize],
|
||||
y=y_pad[:, :, start:start + cropsize])
|
||||
X=X_pad[:, :, start : start + cropsize],
|
||||
y=y_pad[:, :, start : start + cropsize],
|
||||
)
|
||||
patch_list.append(outpath)
|
||||
|
||||
return VocalRemoverValidationSet(patch_list)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,28 +84,31 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,28 +84,31 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,28 +84,31 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,32 +84,37 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,32 +84,37 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -6,19 +6,20 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
nin,
|
||||
nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -26,24 +27,22 @@ class Conv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
nin,
|
||||
nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
bias=False,
|
||||
),
|
||||
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
activ(),
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@ -51,7 +50,6 @@ class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
@ -65,14 +63,15 @@ class Encoder(nn.Module):
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
def __init__(
|
||||
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
||||
):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
@ -85,32 +84,37 @@ class Decoder(nn.Module):
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv6 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.conv7 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat1 = F.interpolate(
|
||||
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
||||
)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
|
@ -3,33 +3,33 @@ import os
|
||||
import pathlib
|
||||
|
||||
default_param = {}
|
||||
default_param['bins'] = 768
|
||||
default_param['unstable_bins'] = 9 # training only
|
||||
default_param['reduction_bins'] = 762 # training only
|
||||
default_param['sr'] = 44100
|
||||
default_param['pre_filter_start'] = 757
|
||||
default_param['pre_filter_stop'] = 768
|
||||
default_param['band'] = {}
|
||||
default_param["bins"] = 768
|
||||
default_param["unstable_bins"] = 9 # training only
|
||||
default_param["reduction_bins"] = 762 # training only
|
||||
default_param["sr"] = 44100
|
||||
default_param["pre_filter_start"] = 757
|
||||
default_param["pre_filter_stop"] = 768
|
||||
default_param["band"] = {}
|
||||
|
||||
|
||||
default_param['band'][1] = {
|
||||
'sr': 11025,
|
||||
'hl': 128,
|
||||
'n_fft': 960,
|
||||
'crop_start': 0,
|
||||
'crop_stop': 245,
|
||||
'lpf_start': 61, # inference only
|
||||
'res_type': 'polyphase'
|
||||
default_param["band"][1] = {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 960,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 245,
|
||||
"lpf_start": 61, # inference only
|
||||
"res_type": "polyphase",
|
||||
}
|
||||
|
||||
default_param['band'][2] = {
|
||||
'sr': 44100,
|
||||
'hl': 512,
|
||||
'n_fft': 1536,
|
||||
'crop_start': 24,
|
||||
'crop_stop': 547,
|
||||
'hpf_start': 81, # inference only
|
||||
'res_type': 'sinc_best'
|
||||
default_param["band"][2] = {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 1536,
|
||||
"crop_start": 24,
|
||||
"crop_stop": 547,
|
||||
"hpf_start": 81, # inference only
|
||||
"res_type": "sinc_best",
|
||||
}
|
||||
|
||||
|
||||
@ -40,21 +40,30 @@ def int_keys(d):
|
||||
k = int(k)
|
||||
r[k] = v
|
||||
return r
|
||||
|
||||
|
||||
|
||||
class ModelParameters(object):
|
||||
def __init__(self, config_path=''):
|
||||
if '.pth' == pathlib.Path(config_path).suffix:
|
||||
def __init__(self, config_path=""):
|
||||
if ".pth" == pathlib.Path(config_path).suffix:
|
||||
import zipfile
|
||||
|
||||
with zipfile.ZipFile(config_path, 'r') as zip:
|
||||
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
|
||||
elif '.json' == pathlib.Path(config_path).suffix:
|
||||
with open(config_path, 'r') as f:
|
||||
|
||||
with zipfile.ZipFile(config_path, "r") as zip:
|
||||
self.param = json.loads(
|
||||
zip.read("param.json"), object_pairs_hook=int_keys
|
||||
)
|
||||
elif ".json" == pathlib.Path(config_path).suffix:
|
||||
with open(config_path, "r") as f:
|
||||
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
||||
else:
|
||||
self.param = default_param
|
||||
|
||||
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
|
||||
|
||||
for k in [
|
||||
"mid_side",
|
||||
"mid_side_b",
|
||||
"mid_side_b2",
|
||||
"stereo_w",
|
||||
"stereo_n",
|
||||
"reverse",
|
||||
]:
|
||||
if not k in self.param:
|
||||
self.param[k] = False
|
||||
self.param[k] = False
|
||||
|
@ -7,7 +7,6 @@ from uvr5_pack.lib_v5 import spec_utils
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -39,7 +38,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
||||
@ -64,13 +62,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -82,24 +83,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -107,7 +117,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -6,7 +6,6 @@ from uvr5_pack.lib_v5 import layers_123821KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -38,7 +37,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
||||
@ -63,13 +61,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -81,24 +82,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -106,7 +116,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -6,7 +6,6 @@ from uvr5_pack.lib_v5 import layers_123821KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -38,7 +37,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
||||
@ -63,13 +61,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -81,24 +82,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -106,7 +116,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -6,7 +6,6 @@ from uvr5_pack.lib_v5 import layers_33966KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16, 32)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -38,7 +37,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 16)
|
||||
@ -63,13 +61,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -81,24 +82,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -106,7 +116,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -7,7 +7,6 @@ from uvr5_pack.lib_v5 import layers_537238KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -39,7 +38,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
||||
@ -64,13 +62,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -82,24 +83,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -107,7 +117,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -7,7 +7,6 @@ from uvr5_pack.lib_v5 import layers_537238KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -39,7 +38,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 64)
|
||||
@ -64,13 +62,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -82,24 +83,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -107,7 +117,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -6,7 +6,6 @@ from uvr5_pack.lib_v5 import layers_123821KB as layers
|
||||
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
@ -38,7 +37,6 @@ class BaseASPPNet(nn.Module):
|
||||
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(2, 32)
|
||||
@ -63,13 +61,16 @@ class CascadedASPPNet(nn.Module):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
x = x[:, :, : self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
aux1 = torch.cat(
|
||||
[
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:]),
|
||||
],
|
||||
dim=2,
|
||||
)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
@ -81,24 +82,33 @@ class CascadedASPPNet(nn.Module):
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
mode="replicate",
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
mode="replicate",
|
||||
)
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
|
||||
mask[:, :, : aggressiveness["split_bin"]],
|
||||
1 + aggressiveness["value"] / 3,
|
||||
)
|
||||
mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
|
||||
mask[:, :, aggressiveness["split_bin"] :],
|
||||
1 + aggressiveness["value"],
|
||||
)
|
||||
|
||||
return mask * mix
|
||||
|
||||
@ -106,7 +116,7 @@ class CascadedASPPNet(nn.Module):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
h = h[:, :, :, self.offset : -self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
|
@ -1,8 +1,9 @@
|
||||
import os,librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
import os, librosa
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from tqdm import tqdm
|
||||
import json,math ,hashlib
|
||||
import json, math, hashlib
|
||||
|
||||
|
||||
def crop_center(h1, h2):
|
||||
h1_shape = h1.size()
|
||||
@ -11,7 +12,7 @@ def crop_center(h1, h2):
|
||||
if h1_shape[3] == h2_shape[3]:
|
||||
return h1
|
||||
elif h1_shape[3] < h2_shape[3]:
|
||||
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
|
||||
raise ValueError("h1_shape[3] must be greater than h2_shape[3]")
|
||||
|
||||
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
|
||||
# e_freq = s_freq + h1_shape[2]
|
||||
@ -22,7 +23,9 @@ def crop_center(h1, h2):
|
||||
return h1
|
||||
|
||||
|
||||
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
def wave_to_spectrogram(
|
||||
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
||||
):
|
||||
if reverse:
|
||||
wave_left = np.flip(np.asfortranarray(wave[0]))
|
||||
wave_right = np.flip(np.asfortranarray(wave[1]))
|
||||
@ -30,21 +33,23 @@ def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=Fal
|
||||
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
||||
elif mid_side_b2:
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
|
||||
else:
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
|
||||
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
|
||||
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
||||
|
||||
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
|
||||
|
||||
|
||||
def wave_to_spectrogram_mt(
|
||||
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
|
||||
):
|
||||
import threading
|
||||
|
||||
if reverse:
|
||||
@ -54,62 +59,75 @@ def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=
|
||||
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
|
||||
elif mid_side_b2:
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
|
||||
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
|
||||
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
|
||||
else:
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
|
||||
|
||||
def run_thread(**kwargs):
|
||||
global spec_left
|
||||
spec_left = librosa.stft(**kwargs)
|
||||
|
||||
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
|
||||
thread = threading.Thread(
|
||||
target=run_thread,
|
||||
kwargs={"y": wave_left, "n_fft": n_fft, "hop_length": hop_length},
|
||||
)
|
||||
thread.start()
|
||||
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
|
||||
thread.join()
|
||||
|
||||
thread.join()
|
||||
|
||||
spec = np.asfortranarray([spec_left, spec_right])
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
|
||||
|
||||
def combine_spectrograms(specs, mp):
|
||||
l = min([specs[i].shape[2] for i in specs])
|
||||
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
|
||||
l = min([specs[i].shape[2] for i in specs])
|
||||
spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
|
||||
offset = 0
|
||||
bands_n = len(mp.param['band'])
|
||||
|
||||
bands_n = len(mp.param["band"])
|
||||
|
||||
for d in range(1, bands_n + 1):
|
||||
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
|
||||
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
|
||||
h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
|
||||
spec_c[:, offset : offset + h, :l] = specs[d][
|
||||
:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l
|
||||
]
|
||||
offset += h
|
||||
|
||||
if offset > mp.param['bins']:
|
||||
raise ValueError('Too much bins')
|
||||
|
||||
|
||||
if offset > mp.param["bins"]:
|
||||
raise ValueError("Too much bins")
|
||||
|
||||
# lowpass fiter
|
||||
if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
||||
if (
|
||||
mp.param["pre_filter_start"] > 0
|
||||
): # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
|
||||
if bands_n == 1:
|
||||
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
|
||||
spec_c = fft_lp_filter(
|
||||
spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"]
|
||||
)
|
||||
else:
|
||||
gp = 1
|
||||
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
|
||||
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
|
||||
gp = 1
|
||||
for b in range(
|
||||
mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]
|
||||
):
|
||||
g = math.pow(
|
||||
10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0
|
||||
)
|
||||
gp = g
|
||||
spec_c[:, b, :] *= g
|
||||
|
||||
return np.asfortranarray(spec_c)
|
||||
|
||||
|
||||
def spectrogram_to_image(spec, mode='magnitude'):
|
||||
if mode == 'magnitude':
|
||||
return np.asfortranarray(spec_c)
|
||||
|
||||
|
||||
def spectrogram_to_image(spec, mode="magnitude"):
|
||||
if mode == "magnitude":
|
||||
if np.iscomplexobj(spec):
|
||||
y = np.abs(spec)
|
||||
else:
|
||||
y = spec
|
||||
y = np.log10(y ** 2 + 1e-8)
|
||||
elif mode == 'phase':
|
||||
y = np.log10(y**2 + 1e-8)
|
||||
elif mode == "phase":
|
||||
if np.iscomplexobj(spec):
|
||||
y = np.angle(spec)
|
||||
else:
|
||||
@ -121,9 +139,7 @@ def spectrogram_to_image(spec, mode='magnitude'):
|
||||
|
||||
if y.ndim == 3:
|
||||
img = img.transpose(1, 2, 0)
|
||||
img = np.concatenate([
|
||||
np.max(img, axis=2, keepdims=True), img
|
||||
], axis=2)
|
||||
img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)
|
||||
|
||||
return img
|
||||
|
||||
@ -136,12 +152,12 @@ def reduce_vocal_aggressively(X, y, softmask):
|
||||
v_mask = v_mag_tmp > y_mag_tmp
|
||||
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
|
||||
|
||||
return y_mag * np.exp(1.j * np.angle(y))
|
||||
return y_mag * np.exp(1.0j * np.angle(y))
|
||||
|
||||
|
||||
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||
if min_range < fade_size * 2:
|
||||
raise ValueError('min_range must be >= fade_area * 2')
|
||||
raise ValueError("min_range must be >= fade_area * 2")
|
||||
|
||||
mag = mag.copy()
|
||||
|
||||
@ -159,72 +175,106 @@ def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
|
||||
|
||||
if s != 0:
|
||||
weight = np.linspace(0, 1, fade_size)
|
||||
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
|
||||
mag[:, :, s : s + fade_size] += weight * ref[:, :, s : s + fade_size]
|
||||
else:
|
||||
s -= fade_size
|
||||
|
||||
if e != mag.shape[2]:
|
||||
weight = np.linspace(1, 0, fade_size)
|
||||
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
|
||||
mag[:, :, e - fade_size : e] += weight * ref[:, :, e - fade_size : e]
|
||||
else:
|
||||
e += fade_size
|
||||
|
||||
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
|
||||
mag[:, :, s + fade_size : e - fade_size] += ref[
|
||||
:, :, s + fade_size : e - fade_size
|
||||
]
|
||||
old_e = e
|
||||
|
||||
return mag
|
||||
|
||||
|
||||
|
||||
def align_wave_head_and_tail(a, b):
|
||||
l = min([a[0].size, b[0].size])
|
||||
|
||||
return a[:l,:l], b[:l,:l]
|
||||
|
||||
l = min([a[0].size, b[0].size])
|
||||
|
||||
return a[:l, :l], b[:l, :l]
|
||||
|
||||
|
||||
def cache_or_load(mix_path, inst_path, mp):
|
||||
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
|
||||
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
|
||||
|
||||
cache_dir = 'mph{}'.format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode('utf-8')).hexdigest())
|
||||
mix_cache_dir = os.path.join('cache', cache_dir)
|
||||
inst_cache_dir = os.path.join('cache', cache_dir)
|
||||
cache_dir = "mph{}".format(
|
||||
hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode("utf-8")).hexdigest()
|
||||
)
|
||||
mix_cache_dir = os.path.join("cache", cache_dir)
|
||||
inst_cache_dir = os.path.join("cache", cache_dir)
|
||||
|
||||
os.makedirs(mix_cache_dir, exist_ok=True)
|
||||
os.makedirs(inst_cache_dir, exist_ok=True)
|
||||
|
||||
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
|
||||
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
|
||||
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + ".npy")
|
||||
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + ".npy")
|
||||
|
||||
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
|
||||
X_spec_m = np.load(mix_cache_path)
|
||||
y_spec_m = np.load(inst_cache_path)
|
||||
else:
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
|
||||
for d in range(len(mp.param['band']), 0, -1):
|
||||
bp = mp.param['band'][d]
|
||||
|
||||
if d == len(mp.param['band']): # high-end band
|
||||
|
||||
for d in range(len(mp.param["band"]), 0, -1):
|
||||
bp = mp.param["band"][d]
|
||||
|
||||
if d == len(mp.param["band"]): # high-end band
|
||||
X_wave[d], _ = librosa.load(
|
||||
mix_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
mix_path, bp["sr"], False, dtype=np.float32, res_type=bp["res_type"]
|
||||
)
|
||||
y_wave[d], _ = librosa.load(
|
||||
inst_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
y_wave[d] = librosa.resample(y_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
|
||||
inst_path,
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.resample(
|
||||
X_wave[d + 1],
|
||||
mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
y_wave[d] = librosa.resample(
|
||||
y_wave[d + 1],
|
||||
mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
|
||||
|
||||
X_spec_s[d] = wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
y_spec_s[d] = wave_to_spectrogram(y_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
|
||||
|
||||
X_spec_s[d] = wave_to_spectrogram(
|
||||
X_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
)
|
||||
y_spec_s[d] = wave_to_spectrogram(
|
||||
y_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
)
|
||||
|
||||
del X_wave, y_wave
|
||||
|
||||
|
||||
X_spec_m = combine_spectrograms(X_spec_s, mp)
|
||||
y_spec_m = combine_spectrograms(y_spec_s, mp)
|
||||
|
||||
|
||||
if X_spec_m.shape != y_spec_m.shape:
|
||||
raise ValueError('The combined spectrograms are different: ' + mix_path)
|
||||
raise ValueError("The combined spectrograms are different: " + mix_path)
|
||||
|
||||
_, ext = os.path.splitext(mix_path)
|
||||
|
||||
@ -244,72 +294,129 @@ def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
return np.asfortranarray(
|
||||
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
||||
)
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
||||
return np.asfortranarray(
|
||||
[
|
||||
np.add(wave_right / 1.25, 0.4 * wave_left),
|
||||
np.subtract(wave_left / 1.25, 0.4 * wave_right),
|
||||
]
|
||||
)
|
||||
else:
|
||||
return np.asfortranarray([wave_left, wave_right])
|
||||
|
||||
|
||||
|
||||
|
||||
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
|
||||
import threading
|
||||
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
|
||||
|
||||
def run_thread(**kwargs):
|
||||
global wave_left
|
||||
wave_left = librosa.istft(**kwargs)
|
||||
|
||||
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
|
||||
|
||||
thread = threading.Thread(
|
||||
target=run_thread, kwargs={"stft_matrix": spec_left, "hop_length": hop_length}
|
||||
)
|
||||
thread.start()
|
||||
wave_right = librosa.istft(spec_right, hop_length=hop_length)
|
||||
thread.join()
|
||||
|
||||
thread.join()
|
||||
|
||||
if reverse:
|
||||
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
|
||||
elif mid_side:
|
||||
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
|
||||
return np.asfortranarray(
|
||||
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
|
||||
)
|
||||
elif mid_side_b2:
|
||||
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
|
||||
return np.asfortranarray(
|
||||
[
|
||||
np.add(wave_right / 1.25, 0.4 * wave_left),
|
||||
np.subtract(wave_left / 1.25, 0.4 * wave_right),
|
||||
]
|
||||
)
|
||||
else:
|
||||
return np.asfortranarray([wave_left, wave_right])
|
||||
|
||||
|
||||
|
||||
|
||||
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
|
||||
wave_band = {}
|
||||
bands_n = len(mp.param['band'])
|
||||
bands_n = len(mp.param["band"])
|
||||
offset = 0
|
||||
|
||||
for d in range(1, bands_n + 1):
|
||||
bp = mp.param['band'][d]
|
||||
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
|
||||
h = bp['crop_stop'] - bp['crop_start']
|
||||
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
|
||||
|
||||
bp = mp.param["band"][d]
|
||||
spec_s = np.ndarray(
|
||||
shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex
|
||||
)
|
||||
h = bp["crop_stop"] - bp["crop_start"]
|
||||
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[
|
||||
:, offset : offset + h, :
|
||||
]
|
||||
|
||||
offset += h
|
||||
if d == bands_n: # higher
|
||||
if extra_bins_h: # if --high_end_process bypass
|
||||
max_bin = bp['n_fft'] // 2
|
||||
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
|
||||
if bp['hpf_start'] > 0:
|
||||
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
||||
if d == bands_n: # higher
|
||||
if extra_bins_h: # if --high_end_process bypass
|
||||
max_bin = bp["n_fft"] // 2
|
||||
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[
|
||||
:, :extra_bins_h, :
|
||||
]
|
||||
if bp["hpf_start"] > 0:
|
||||
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
||||
if bands_n == 1:
|
||||
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
wave = spectrogram_to_wave(
|
||||
spec_s,
|
||||
bp["hl"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
)
|
||||
else:
|
||||
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
||||
wave = np.add(
|
||||
wave,
|
||||
spectrogram_to_wave(
|
||||
spec_s,
|
||||
bp["hl"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
),
|
||||
)
|
||||
else:
|
||||
sr = mp.param['band'][d+1]['sr']
|
||||
if d == 1: # lower
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
|
||||
else: # mid
|
||||
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
|
||||
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
|
||||
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
|
||||
sr = mp.param["band"][d + 1]["sr"]
|
||||
if d == 1: # lower
|
||||
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
|
||||
wave = librosa.resample(
|
||||
spectrogram_to_wave(
|
||||
spec_s,
|
||||
bp["hl"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
),
|
||||
bp["sr"],
|
||||
sr,
|
||||
res_type="sinc_fastest",
|
||||
)
|
||||
else: # mid
|
||||
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
|
||||
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
|
||||
wave2 = np.add(
|
||||
wave,
|
||||
spectrogram_to_wave(
|
||||
spec_s,
|
||||
bp["hl"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
),
|
||||
)
|
||||
# wave = librosa.core.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
|
||||
wave = librosa.core.resample(wave2, bp['sr'], sr,res_type='scipy')
|
||||
|
||||
wave = librosa.core.resample(wave2, bp["sr"], sr, res_type="scipy")
|
||||
|
||||
return wave.T
|
||||
|
||||
|
||||
@ -318,7 +425,7 @@ def fft_lp_filter(spec, bin_start, bin_stop):
|
||||
for b in range(bin_start, bin_stop):
|
||||
g -= 1 / (bin_stop - bin_start)
|
||||
spec[:, b, :] = g * spec[:, b, :]
|
||||
|
||||
|
||||
spec[:, bin_stop:, :] *= 0
|
||||
|
||||
return spec
|
||||
@ -329,42 +436,69 @@ def fft_hp_filter(spec, bin_start, bin_stop):
|
||||
for b in range(bin_start, bin_stop, -1):
|
||||
g -= 1 / (bin_start - bin_stop)
|
||||
spec[:, b, :] = g * spec[:, b, :]
|
||||
|
||||
spec[:, 0:bin_stop+1, :] *= 0
|
||||
|
||||
spec[:, 0 : bin_stop + 1, :] *= 0
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def mirroring(a, spec_m, input_high_end, mp):
|
||||
if 'mirroring' == a:
|
||||
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
||||
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
|
||||
|
||||
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
|
||||
|
||||
if 'mirroring2' == a:
|
||||
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
|
||||
if "mirroring" == a:
|
||||
mirror = np.flip(
|
||||
np.abs(
|
||||
spec_m[
|
||||
:,
|
||||
mp.param["pre_filter_start"]
|
||||
- 10
|
||||
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
||||
- 10,
|
||||
:,
|
||||
]
|
||||
),
|
||||
1,
|
||||
)
|
||||
mirror = mirror * np.exp(1.0j * np.angle(input_high_end))
|
||||
|
||||
return np.where(
|
||||
np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror
|
||||
)
|
||||
|
||||
if "mirroring2" == a:
|
||||
mirror = np.flip(
|
||||
np.abs(
|
||||
spec_m[
|
||||
:,
|
||||
mp.param["pre_filter_start"]
|
||||
- 10
|
||||
- input_high_end.shape[1] : mp.param["pre_filter_start"]
|
||||
- 10,
|
||||
:,
|
||||
]
|
||||
),
|
||||
1,
|
||||
)
|
||||
mi = np.multiply(mirror, input_high_end * 1.7)
|
||||
|
||||
|
||||
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
|
||||
|
||||
|
||||
def ensembling(a, specs):
|
||||
def ensembling(a, specs):
|
||||
for i in range(1, len(specs)):
|
||||
if i == 1:
|
||||
spec = specs[0]
|
||||
|
||||
ln = min([spec.shape[2], specs[i].shape[2]])
|
||||
spec = spec[:,:,:ln]
|
||||
specs[i] = specs[i][:,:,:ln]
|
||||
spec = spec[:, :, :ln]
|
||||
specs[i] = specs[i][:, :, :ln]
|
||||
|
||||
if 'min_mag' == a:
|
||||
if "min_mag" == a:
|
||||
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
|
||||
if 'max_mag' == a:
|
||||
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
|
||||
if "max_mag" == a:
|
||||
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def stft(wave, nfft, hl):
|
||||
wave_left = np.asfortranarray(wave[0])
|
||||
wave_right = np.asfortranarray(wave[1])
|
||||
@ -374,6 +508,7 @@ def stft(wave, nfft, hl):
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def istft(spec, hl):
|
||||
spec_left = np.asfortranarray(spec[0])
|
||||
spec_right = np.asfortranarray(spec[1])
|
||||
@ -389,62 +524,94 @@ if __name__ == "__main__":
|
||||
import time
|
||||
import argparse
|
||||
from model_param_init import ModelParameters
|
||||
|
||||
|
||||
p = argparse.ArgumentParser()
|
||||
p.add_argument('--algorithm', '-a', type=str, choices=['invert', 'invert_p', 'min_mag', 'max_mag', 'deep', 'align'], default='min_mag')
|
||||
p.add_argument('--model_params', '-m', type=str, default=os.path.join('modelparams', '1band_sr44100_hl512.json'))
|
||||
p.add_argument('--output_name', '-o', type=str, default='output')
|
||||
p.add_argument('--vocals_only', '-v', action='store_true')
|
||||
p.add_argument('input', nargs='+')
|
||||
p.add_argument(
|
||||
"--algorithm",
|
||||
"-a",
|
||||
type=str,
|
||||
choices=["invert", "invert_p", "min_mag", "max_mag", "deep", "align"],
|
||||
default="min_mag",
|
||||
)
|
||||
p.add_argument(
|
||||
"--model_params",
|
||||
"-m",
|
||||
type=str,
|
||||
default=os.path.join("modelparams", "1band_sr44100_hl512.json"),
|
||||
)
|
||||
p.add_argument("--output_name", "-o", type=str, default="output")
|
||||
p.add_argument("--vocals_only", "-v", action="store_true")
|
||||
p.add_argument("input", nargs="+")
|
||||
args = p.parse_args()
|
||||
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
if args.algorithm.startswith('invert') and len(args.input) != 2:
|
||||
raise ValueError('There should be two input files.')
|
||||
|
||||
if not args.algorithm.startswith('invert') and len(args.input) < 2:
|
||||
raise ValueError('There must be at least two input files.')
|
||||
|
||||
|
||||
if args.algorithm.startswith("invert") and len(args.input) != 2:
|
||||
raise ValueError("There should be two input files.")
|
||||
|
||||
if not args.algorithm.startswith("invert") and len(args.input) < 2:
|
||||
raise ValueError("There must be at least two input files.")
|
||||
|
||||
wave, specs = {}, {}
|
||||
mp = ModelParameters(args.model_params)
|
||||
|
||||
for i in range(len(args.input)):
|
||||
|
||||
for i in range(len(args.input)):
|
||||
spec = {}
|
||||
|
||||
for d in range(len(mp.param['band']), 0, -1):
|
||||
bp = mp.param['band'][d]
|
||||
|
||||
if d == len(mp.param['band']): # high-end band
|
||||
|
||||
for d in range(len(mp.param["band"]), 0, -1):
|
||||
bp = mp.param["band"][d]
|
||||
|
||||
if d == len(mp.param["band"]): # high-end band
|
||||
wave[d], _ = librosa.load(
|
||||
args.input[i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
|
||||
if len(wave[d].shape) == 1: # mono to stereo
|
||||
args.input[i],
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
if len(wave[d].shape) == 1: # mono to stereo
|
||||
wave[d] = np.array([wave[d], wave[d]])
|
||||
else: # lower bands
|
||||
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
|
||||
spec[d] = wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
|
||||
|
||||
else: # lower bands
|
||||
wave[d] = librosa.resample(
|
||||
wave[d + 1],
|
||||
mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
|
||||
spec[d] = wave_to_spectrogram(
|
||||
wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
mp.param["mid_side"],
|
||||
mp.param["mid_side_b2"],
|
||||
mp.param["reverse"],
|
||||
)
|
||||
|
||||
specs[i] = combine_spectrograms(spec, mp)
|
||||
|
||||
|
||||
del wave
|
||||
|
||||
if args.algorithm == 'deep':
|
||||
if args.algorithm == "deep":
|
||||
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
|
||||
v_spec = d_spec - specs[1]
|
||||
sf.write(os.path.join('{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
||||
|
||||
if args.algorithm.startswith('invert'):
|
||||
sf.write(
|
||||
os.path.join("{}.wav".format(args.output_name)),
|
||||
cmb_spectrogram_to_wave(v_spec, mp),
|
||||
mp.param["sr"],
|
||||
)
|
||||
|
||||
if args.algorithm.startswith("invert"):
|
||||
ln = min([specs[0].shape[2], specs[1].shape[2]])
|
||||
specs[0] = specs[0][:,:,:ln]
|
||||
specs[1] = specs[1][:,:,:ln]
|
||||
|
||||
if 'invert_p' == args.algorithm:
|
||||
specs[0] = specs[0][:, :, :ln]
|
||||
specs[1] = specs[1][:, :, :ln]
|
||||
|
||||
if "invert_p" == args.algorithm:
|
||||
X_mag = np.abs(specs[0])
|
||||
y_mag = np.abs(specs[1])
|
||||
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
||||
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
|
||||
y_mag = np.abs(specs[1])
|
||||
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
|
||||
v_spec = specs[1] - max_mag * np.exp(1.0j * np.angle(specs[0]))
|
||||
else:
|
||||
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
|
||||
v_spec = specs[0] - specs[1]
|
||||
@ -458,28 +625,43 @@ if __name__ == "__main__":
|
||||
y_image = spectrogram_to_image(y_mag)
|
||||
v_image = spectrogram_to_image(v_mag)
|
||||
|
||||
cv2.imwrite('{}_X.png'.format(args.output_name), X_image)
|
||||
cv2.imwrite('{}_y.png'.format(args.output_name), y_image)
|
||||
cv2.imwrite('{}_v.png'.format(args.output_name), v_image)
|
||||
|
||||
sf.write('{}_X.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[0], mp), mp.param['sr'])
|
||||
sf.write('{}_y.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[1], mp), mp.param['sr'])
|
||||
|
||||
sf.write('{}_v.wav'.format(args.output_name), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
|
||||
else:
|
||||
if not args.algorithm == 'deep':
|
||||
sf.write(os.path.join('ensembled','{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp), mp.param['sr'])
|
||||
cv2.imwrite("{}_X.png".format(args.output_name), X_image)
|
||||
cv2.imwrite("{}_y.png".format(args.output_name), y_image)
|
||||
cv2.imwrite("{}_v.png".format(args.output_name), v_image)
|
||||
|
||||
if args.algorithm == 'align':
|
||||
sf.write(
|
||||
"{}_X.wav".format(args.output_name),
|
||||
cmb_spectrogram_to_wave(specs[0], mp),
|
||||
mp.param["sr"],
|
||||
)
|
||||
sf.write(
|
||||
"{}_y.wav".format(args.output_name),
|
||||
cmb_spectrogram_to_wave(specs[1], mp),
|
||||
mp.param["sr"],
|
||||
)
|
||||
|
||||
sf.write(
|
||||
"{}_v.wav".format(args.output_name),
|
||||
cmb_spectrogram_to_wave(v_spec, mp),
|
||||
mp.param["sr"],
|
||||
)
|
||||
else:
|
||||
if not args.algorithm == "deep":
|
||||
sf.write(
|
||||
os.path.join("ensembled", "{}.wav".format(args.output_name)),
|
||||
cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp),
|
||||
mp.param["sr"],
|
||||
)
|
||||
|
||||
if args.algorithm == "align":
|
||||
trackalignment = [
|
||||
{
|
||||
'file1':'"{}"'.format(args.input[0]),
|
||||
'file2':'"{}"'.format(args.input[1])
|
||||
"file1": '"{}"'.format(args.input[0]),
|
||||
"file2": '"{}"'.format(args.input[1]),
|
||||
}
|
||||
]
|
||||
|
||||
for i,e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
|
||||
for i, e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
|
||||
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
|
||||
|
||||
#print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
||||
# print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))
|
||||
|
263
uvr5_pack/name_params.json
Normal file
263
uvr5_pack/name_params.json
Normal file
@ -0,0 +1,263 @@
|
||||
{
|
||||
"equivalent" : [
|
||||
{
|
||||
"model_hash_name" : [
|
||||
{
|
||||
"hash_name": "47939caf0cfe52a0e81442b85b971dfd",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "4e4ecb9764c50a8c414fee6e10395bbe",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
||||
"param_name": "4band_v2"
|
||||
},
|
||||
{
|
||||
"hash_name": "ca106edd563e034bde0bdec4bb7a4b36",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
||||
"param_name": "4band_v2"
|
||||
},
|
||||
{
|
||||
"hash_name": "e60a1e84803ce4efc0a6551206cc4b71",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "a82f14e75892e55e994376edbf0c8435",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "6dd9eaa6f0420af9f1d403aaafa4cc06",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
||||
"param_name": "4band_v2_sn"
|
||||
},
|
||||
{
|
||||
"hash_name": "08611fb99bd59eaa79ad27c58d137727",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
||||
"param_name": "4band_v2_sn"
|
||||
},
|
||||
{
|
||||
"hash_name": "5c7bbca45a187e81abbbd351606164e5",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
||||
"param_name": "3band_44100_msb2"
|
||||
},
|
||||
{
|
||||
"hash_name": "d6b2cb685a058a091e5e7098192d3233",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
||||
"param_name": "3band_44100_msb2"
|
||||
},
|
||||
{
|
||||
"hash_name": "c1b9f38170a7c90e96f027992eb7c62b",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "c3448ec923fa0edf3d03a19e633faa53",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "68aa2c8093d0080704b200d140f59e54",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100.json",
|
||||
"param_name": "3band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "fdc83be5b798e4bd29fe00fe6600e147",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
||||
"param_name": "3band_44100_mid.json"
|
||||
},
|
||||
{
|
||||
"hash_name": "2ce34bc92fd57f55db16b7a4def3d745",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
||||
"param_name": "3band_44100_mid.json"
|
||||
},
|
||||
{
|
||||
"hash_name": "52fdca89576f06cf4340b74a4730ee5f",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100.json"
|
||||
},
|
||||
{
|
||||
"hash_name": "41191165b05d38fc77f072fa9e8e8a30",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100.json"
|
||||
},
|
||||
{
|
||||
"hash_name": "89e83b511ad474592689e562d5b1f80e",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
||||
"param_name": "2band_32000.json"
|
||||
},
|
||||
{
|
||||
"hash_name": "0b954da81d453b716b114d6d7c95177f",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
||||
"param_name": "2band_32000.json"
|
||||
}
|
||||
|
||||
],
|
||||
"v4 Models": [
|
||||
{
|
||||
"hash_name": "6a00461c51c2920fd68937d4609ed6c8",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json",
|
||||
"param_name": "1band_sr16000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "0ab504864d20f1bd378fe9c81ef37140",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
||||
"param_name": "1band_sr32000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "7dd21065bf91c10f7fccb57d7d83b07f",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
||||
"param_name": "1band_sr32000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "80ab74d65e515caa3622728d2de07d23",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
||||
"param_name": "1band_sr32000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "edc115e7fc523245062200c00caa847f",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
||||
"param_name": "1band_sr33075_hl384"
|
||||
},
|
||||
{
|
||||
"hash_name": "28063e9f6ab5b341c5f6d3c67f2045b7",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
||||
"param_name": "1band_sr33075_hl384"
|
||||
},
|
||||
{
|
||||
"hash_name": "b58090534c52cbc3e9b5104bad666ef2",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
||||
"param_name": "1band_sr44100_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "0cdab9947f1b0928705f518f3c78ea8f",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
||||
"param_name": "1band_sr44100_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "ae702fed0238afb5346db8356fe25f13",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json",
|
||||
"param_name": "1band_sr44100_hl1024"
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"User Models" : [
|
||||
{
|
||||
"1 Band": [
|
||||
{
|
||||
"hash_name": "1band_sr16000_hl512",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json",
|
||||
"param_name": "1band_sr16000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "1band_sr32000_hl512",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json",
|
||||
"param_name": "1band_sr16000_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "1band_sr33075_hl384",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json",
|
||||
"param_name": "1band_sr33075_hl384"
|
||||
},
|
||||
{
|
||||
"hash_name": "1band_sr44100_hl256",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json",
|
||||
"param_name": "1band_sr44100_hl256"
|
||||
},
|
||||
{
|
||||
"hash_name": "1band_sr44100_hl512",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json",
|
||||
"param_name": "1band_sr44100_hl512"
|
||||
},
|
||||
{
|
||||
"hash_name": "1band_sr44100_hl1024",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json",
|
||||
"param_name": "1band_sr44100_hl1024"
|
||||
}
|
||||
],
|
||||
"2 Band": [
|
||||
{
|
||||
"hash_name": "2band_44100_lofi",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json",
|
||||
"param_name": "2band_44100_lofi"
|
||||
},
|
||||
{
|
||||
"hash_name": "2band_32000",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/2band_32000.json",
|
||||
"param_name": "2band_32000"
|
||||
},
|
||||
{
|
||||
"hash_name": "2band_48000",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/2band_48000.json",
|
||||
"param_name": "2band_48000"
|
||||
}
|
||||
],
|
||||
"3 Band": [
|
||||
{
|
||||
"hash_name": "3band_44100",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100.json",
|
||||
"param_name": "3band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "3band_44100_mid",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_mid.json",
|
||||
"param_name": "3band_44100_mid"
|
||||
},
|
||||
{
|
||||
"hash_name": "3band_44100_msb2",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json",
|
||||
"param_name": "3band_44100_msb2"
|
||||
}
|
||||
],
|
||||
"4 Band": [
|
||||
{
|
||||
"hash_name": "4band_44100",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100.json",
|
||||
"param_name": "4band_44100"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_44100_mid",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_mid.json",
|
||||
"param_name": "4band_44100_mid"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_44100_msb",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_msb.json",
|
||||
"param_name": "4band_44100_msb"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_44100_msb2",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json",
|
||||
"param_name": "4band_44100_msb2"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_44100_reverse",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json",
|
||||
"param_name": "4band_44100_reverse"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_44100_sw",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_44100_sw.json",
|
||||
"param_name": "4band_44100_sw"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_v2",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2.json",
|
||||
"param_name": "4band_v2"
|
||||
},
|
||||
{
|
||||
"hash_name": "4band_v2_sn",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/4band_v2_sn.json",
|
||||
"param_name": "4band_v2_sn"
|
||||
},
|
||||
{
|
||||
"hash_name": "tmodelparam",
|
||||
"model_params": "uvr5_pack/lib_v5/modelparams/tmodelparam.json",
|
||||
"param_name": "User Model Param Set"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
@ -1,6 +1,15 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import json
|
||||
|
||||
|
||||
def load_data(file_name: str = "./uvr5_pack/data.json") -> dict:
|
||||
with open(file_name, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def make_padding(width, cropsize, offset):
|
||||
left = offset
|
||||
@ -10,233 +19,102 @@ def make_padding(width, cropsize, offset):
|
||||
right = roi_size - (width % roi_size) + left
|
||||
|
||||
return left, right, roi_size
|
||||
def inference(X_spec, device, model, aggressiveness,data):
|
||||
'''
|
||||
|
||||
|
||||
def inference(X_spec, device, model, aggressiveness, data):
|
||||
"""
|
||||
data : dic configs
|
||||
'''
|
||||
|
||||
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness,is_half=True):
|
||||
"""
|
||||
|
||||
def _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
|
||||
):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
preds = []
|
||||
|
||||
|
||||
iterations = [n_window]
|
||||
|
||||
total_iterations = sum(iterations)
|
||||
for i in tqdm(range(n_window)):
|
||||
total_iterations = sum(iterations)
|
||||
for i in tqdm(range(n_window)):
|
||||
start = i * roi_size
|
||||
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
|
||||
X_mag_window = X_mag_pad[
|
||||
None, :, :, start : start + data["window_size"]
|
||||
]
|
||||
X_mag_window = torch.from_numpy(X_mag_window)
|
||||
if(is_half):X_mag_window=X_mag_window.half()
|
||||
X_mag_window=X_mag_window.to(device)
|
||||
if is_half:
|
||||
X_mag_window = X_mag_window.half()
|
||||
X_mag_window = X_mag_window.to(device)
|
||||
|
||||
pred = model.predict(X_mag_window, aggressiveness)
|
||||
|
||||
pred = pred.detach().cpu().numpy()
|
||||
preds.append(pred[0])
|
||||
|
||||
|
||||
pred = np.concatenate(preds, axis=2)
|
||||
return pred
|
||||
|
||||
|
||||
def preprocess(X_spec):
|
||||
X_mag = np.abs(X_spec)
|
||||
X_phase = np.angle(X_spec)
|
||||
|
||||
return X_mag, X_phase
|
||||
|
||||
|
||||
X_mag, X_phase = preprocess(X_spec)
|
||||
|
||||
coef = X_mag.max()
|
||||
X_mag_pre = X_mag / coef
|
||||
|
||||
n_frame = X_mag_pre.shape[2]
|
||||
pad_l, pad_r, roi_size = make_padding(n_frame,
|
||||
data['window_size'], model.offset)
|
||||
pad_l, pad_r, roi_size = make_padding(n_frame, data["window_size"], model.offset)
|
||||
n_window = int(np.ceil(n_frame / roi_size))
|
||||
|
||||
X_mag_pad = np.pad(
|
||||
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
||||
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
||||
|
||||
if(list(model.state_dict().values())[0].dtype==torch.float16):is_half=True
|
||||
else:is_half=False
|
||||
pred = _execute(X_mag_pad, roi_size, n_window,
|
||||
device, model, aggressiveness,is_half)
|
||||
if list(model.state_dict().values())[0].dtype == torch.float16:
|
||||
is_half = True
|
||||
else:
|
||||
is_half = False
|
||||
pred = _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
||||
)
|
||||
pred = pred[:, :, :n_frame]
|
||||
|
||||
if data['tta']:
|
||||
|
||||
if data["tta"]:
|
||||
pad_l += roi_size // 2
|
||||
pad_r += roi_size // 2
|
||||
n_window += 1
|
||||
|
||||
X_mag_pad = np.pad(
|
||||
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
|
||||
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
||||
|
||||
pred_tta = _execute(X_mag_pad, roi_size, n_window,
|
||||
device, model, aggressiveness,is_half)
|
||||
pred_tta = pred_tta[:, :, roi_size // 2:]
|
||||
pred_tta = _execute(
|
||||
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
||||
)
|
||||
pred_tta = pred_tta[:, :, roi_size // 2 :]
|
||||
pred_tta = pred_tta[:, :, :n_frame]
|
||||
|
||||
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
|
||||
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.0j * X_phase)
|
||||
else:
|
||||
return pred * coef, X_mag, np.exp(1.j * X_phase)
|
||||
|
||||
return pred * coef, X_mag, np.exp(1.0j * X_phase)
|
||||
|
||||
|
||||
def _get_name_params(model_path , model_hash):
|
||||
def _get_name_params(model_path, model_hash):
|
||||
data = load_data()
|
||||
flag = False
|
||||
ModelName = model_path
|
||||
if model_hash == '47939caf0cfe52a0e81442b85b971dfd':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if model_hash == '4e4ecb9764c50a8c414fee6e10395bbe':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
||||
param_name_auto=str('4band_v2')
|
||||
if model_hash == 'ca106edd563e034bde0bdec4bb7a4b36':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
||||
param_name_auto=str('4band_v2')
|
||||
if model_hash == 'e60a1e84803ce4efc0a6551206cc4b71':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if model_hash == 'a82f14e75892e55e994376edbf0c8435':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if model_hash == '6dd9eaa6f0420af9f1d403aaafa4cc06':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
||||
param_name_auto=str('4band_v2_sn')
|
||||
if model_hash == '08611fb99bd59eaa79ad27c58d137727':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
||||
param_name_auto=str('4band_v2_sn')
|
||||
if model_hash == '5c7bbca45a187e81abbbd351606164e5':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
||||
param_name_auto=str('3band_44100_msb2')
|
||||
if model_hash == 'd6b2cb685a058a091e5e7098192d3233':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
||||
param_name_auto=str('3band_44100_msb2')
|
||||
if model_hash == 'c1b9f38170a7c90e96f027992eb7c62b':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if model_hash == 'c3448ec923fa0edf3d03a19e633faa53':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if model_hash == '68aa2c8093d0080704b200d140f59e54':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100.json')
|
||||
param_name_auto=str('3band_44100.json')
|
||||
if model_hash == 'fdc83be5b798e4bd29fe00fe6600e147':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
||||
param_name_auto=str('3band_44100_mid.json')
|
||||
if model_hash == '2ce34bc92fd57f55db16b7a4def3d745':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
||||
param_name_auto=str('3band_44100_mid.json')
|
||||
if model_hash == '52fdca89576f06cf4340b74a4730ee5f':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100.json')
|
||||
if model_hash == '41191165b05d38fc77f072fa9e8e8a30':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100.json')
|
||||
if model_hash == '89e83b511ad474592689e562d5b1f80e':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
||||
param_name_auto=str('2band_32000.json')
|
||||
if model_hash == '0b954da81d453b716b114d6d7c95177f':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
||||
param_name_auto=str('2band_32000.json')
|
||||
for type in list(data):
|
||||
for model in list(data[type][0]):
|
||||
for i in range(len(data[type][0][model])):
|
||||
if str(data[type][0][model][i]["hash_name"]) == model_hash:
|
||||
flag = True
|
||||
elif str(data[type][0][model][i]["hash_name"]) in ModelName:
|
||||
flag = True
|
||||
|
||||
#v4 Models
|
||||
if model_hash == '6a00461c51c2920fd68937d4609ed6c8':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
|
||||
param_name_auto=str('1band_sr16000_hl512')
|
||||
if model_hash == '0ab504864d20f1bd378fe9c81ef37140':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
||||
param_name_auto=str('1band_sr32000_hl512')
|
||||
if model_hash == '7dd21065bf91c10f7fccb57d7d83b07f':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
||||
param_name_auto=str('1band_sr32000_hl512')
|
||||
if model_hash == '80ab74d65e515caa3622728d2de07d23':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
||||
param_name_auto=str('1band_sr32000_hl512')
|
||||
if model_hash == 'edc115e7fc523245062200c00caa847f':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
||||
param_name_auto=str('1band_sr33075_hl384')
|
||||
if model_hash == '28063e9f6ab5b341c5f6d3c67f2045b7':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
||||
param_name_auto=str('1band_sr33075_hl384')
|
||||
if model_hash == 'b58090534c52cbc3e9b5104bad666ef2':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
||||
param_name_auto=str('1band_sr44100_hl512')
|
||||
if model_hash == '0cdab9947f1b0928705f518f3c78ea8f':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
||||
param_name_auto=str('1band_sr44100_hl512')
|
||||
if model_hash == 'ae702fed0238afb5346db8356fe25f13':
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
|
||||
param_name_auto=str('1band_sr44100_hl1024')
|
||||
#User Models
|
||||
|
||||
#1 Band
|
||||
if '1band_sr16000_hl512' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
|
||||
param_name_auto=str('1band_sr16000_hl512')
|
||||
if '1band_sr32000_hl512' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
|
||||
param_name_auto=str('1band_sr32000_hl512')
|
||||
if '1band_sr33075_hl384' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
|
||||
param_name_auto=str('1band_sr33075_hl384')
|
||||
if '1band_sr44100_hl256' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json')
|
||||
param_name_auto=str('1band_sr44100_hl256')
|
||||
if '1band_sr44100_hl512' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
|
||||
param_name_auto=str('1band_sr44100_hl512')
|
||||
if '1band_sr44100_hl1024' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
|
||||
param_name_auto=str('1band_sr44100_hl1024')
|
||||
|
||||
#2 Band
|
||||
if '2band_44100_lofi' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json')
|
||||
param_name_auto=str('2band_44100_lofi')
|
||||
if '2band_32000' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
|
||||
param_name_auto=str('2band_32000')
|
||||
if '2band_48000' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_48000.json')
|
||||
param_name_auto=str('2band_48000')
|
||||
|
||||
#3 Band
|
||||
if '3band_44100' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100.json')
|
||||
param_name_auto=str('3band_44100')
|
||||
if '3band_44100_mid' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
|
||||
param_name_auto=str('3band_44100_mid')
|
||||
if '3band_44100_msb2' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
|
||||
param_name_auto=str('3band_44100_msb2')
|
||||
|
||||
#4 Band
|
||||
if '4band_44100' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
|
||||
param_name_auto=str('4band_44100')
|
||||
if '4band_44100_mid' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_mid.json')
|
||||
param_name_auto=str('4band_44100_mid')
|
||||
if '4band_44100_msb' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_msb.json')
|
||||
param_name_auto=str('4band_44100_msb')
|
||||
if '4band_44100_msb2' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json')
|
||||
param_name_auto=str('4band_44100_msb2')
|
||||
if '4band_44100_reverse' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json')
|
||||
param_name_auto=str('4band_44100_reverse')
|
||||
if '4band_44100_sw' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_sw.json')
|
||||
param_name_auto=str('4band_44100_sw')
|
||||
if '4band_v2' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
|
||||
param_name_auto=str('4band_v2')
|
||||
if '4band_v2_sn' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
|
||||
param_name_auto=str('4band_v2_sn')
|
||||
if 'tmodelparam' in ModelName:
|
||||
model_params_auto=str('uvr5_pack/lib_v5/modelparams/tmodelparam.json')
|
||||
param_name_auto=str('User Model Param Set')
|
||||
return param_name_auto , model_params_auto
|
||||
if flag:
|
||||
model_params_auto = data[type][0][model][i]["model_params"]
|
||||
param_name_auto = data[type][0][model][i]["param_name"]
|
||||
if type == "equivalent":
|
||||
return param_name_auto, model_params_auto
|
||||
else:
|
||||
flag = False
|
||||
return param_name_auto, model_params_auto
|
||||
|
@ -1,36 +1,47 @@
|
||||
import numpy as np,parselmouth,torch,pdb
|
||||
import numpy as np, parselmouth, torch, pdb
|
||||
from time import time as ttime
|
||||
import torch.nn.functional as F
|
||||
from config import x_pad,x_query,x_center,x_max
|
||||
from config import x_pad, x_query, x_center, x_max
|
||||
import scipy.signal as signal
|
||||
import pyworld,os,traceback,faiss
|
||||
class VC(object):
|
||||
def __init__(self,tgt_sr,device,is_half):
|
||||
self.sr=16000#hubert输入采样率
|
||||
self.window=160#每帧点数
|
||||
self.t_pad=self.sr*x_pad#每条前后pad时间
|
||||
self.t_pad_tgt=tgt_sr*x_pad
|
||||
self.t_pad2=self.t_pad*2
|
||||
self.t_query=self.sr*x_query#查询切点前后查询时间
|
||||
self.t_center=self.sr*x_center#查询切点位置
|
||||
self.t_max=self.sr*x_max#免查询时长阈值
|
||||
self.device=device
|
||||
self.is_half=is_half
|
||||
import pyworld, os, traceback, faiss
|
||||
|
||||
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
|
||||
|
||||
class VC(object):
|
||||
def __init__(self, tgt_sr, device, is_half):
|
||||
self.sr = 16000 # hubert输入采样率
|
||||
self.window = 160 # 每帧点数
|
||||
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
||||
self.t_pad_tgt = tgt_sr * x_pad
|
||||
self.t_pad2 = self.t_pad * 2
|
||||
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
||||
self.t_center = self.sr * x_center # 查询切点位置
|
||||
self.t_max = self.sr * x_max # 免查询时长阈值
|
||||
self.device = device
|
||||
self.is_half = is_half
|
||||
|
||||
def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None):
|
||||
time_step = self.window / self.sr * 1000
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
if(f0_method=="pm"):
|
||||
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
||||
pad_size=(p_len - len(f0) + 1) // 2
|
||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||
elif(f0_method=="harvest"):
|
||||
if f0_method == "pm":
|
||||
f0 = (
|
||||
parselmouth.Sound(x, self.sr)
|
||||
.to_pitch_ac(
|
||||
time_step=time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=f0_min,
|
||||
pitch_ceiling=f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(
|
||||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||
)
|
||||
elif f0_method == "harvest":
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=self.sr,
|
||||
@ -42,25 +53,45 @@ class VC(object):
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
tf0=self.sr//self.window#每秒f0点数
|
||||
if (inp_f0 is not None):
|
||||
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
|
||||
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
|
||||
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
|
||||
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
|
||||
tf0 = self.sr // self.window # 每秒f0点数
|
||||
if inp_f0 is not None:
|
||||
delta_t = np.round(
|
||||
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||
).astype("int16")
|
||||
replace_f0 = np.interp(
|
||||
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||
)
|
||||
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse, f0bak#1-0
|
||||
return f0_coarse, f0bak # 1-0
|
||||
|
||||
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
|
||||
def vc(
|
||||
self,
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio0,
|
||||
pitch,
|
||||
pitchf,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
): # ,file_index,file_big_npy
|
||||
feats = torch.from_numpy(audio0)
|
||||
if(self.is_half):feats=feats.half()
|
||||
else:feats=feats.float()
|
||||
if self.is_half:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
@ -75,91 +106,196 @@ class VC(object):
|
||||
t0 = ttime()
|
||||
with torch.no_grad():
|
||||
logits = model.extract_features(**inputs)
|
||||
feats = model.final_proj(logits[0])
|
||||
feats = model.final_proj(logits[0])
|
||||
|
||||
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
|
||||
if (
|
||||
isinstance(index, type(None)) == False
|
||||
and isinstance(big_npy, type(None)) == False
|
||||
and index_rate != 0
|
||||
):
|
||||
npy = feats[0].cpu().numpy()
|
||||
if(self.is_half):npy=npy.astype("float32")
|
||||
if self.is_half:
|
||||
npy = npy.astype("float32")
|
||||
_, I = index.search(npy, 1)
|
||||
npy=big_npy[I.squeeze()]
|
||||
if(self.is_half):npy=npy.astype("float16")
|
||||
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
|
||||
npy = big_npy[I.squeeze()]
|
||||
if self.is_half:
|
||||
npy = npy.astype("float16")
|
||||
feats = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
||||
+ (1 - index_rate) * feats
|
||||
)
|
||||
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
t1 = ttime()
|
||||
p_len = audio0.shape[0]//self.window
|
||||
if(feats.shape[1]<p_len):
|
||||
p_len=feats.shape[1]
|
||||
if(pitch!=None and pitchf!=None):
|
||||
pitch=pitch[:,:p_len]
|
||||
pitchf=pitchf[:,:p_len]
|
||||
p_len=torch.tensor([p_len],device=self.device).long()
|
||||
p_len = audio0.shape[0] // self.window
|
||||
if feats.shape[1] < p_len:
|
||||
p_len = feats.shape[1]
|
||||
if pitch != None and pitchf != None:
|
||||
pitch = pitch[:, :p_len]
|
||||
pitchf = pitchf[:, :p_len]
|
||||
p_len = torch.tensor([p_len], device=self.device).long()
|
||||
with torch.no_grad():
|
||||
if(pitch!=None and pitchf!=None):
|
||||
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
if pitch != None and pitchf != None:
|
||||
audio1 = (
|
||||
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
.astype(np.int16)
|
||||
)
|
||||
else:
|
||||
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
del feats,p_len,padding_mask
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
audio1 = (
|
||||
(net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
.astype(np.int16)
|
||||
)
|
||||
del feats, p_len, padding_mask
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
t2 = ttime()
|
||||
times[0] += (t1 - t0)
|
||||
times[2] += (t2 - t1)
|
||||
times[0] += t1 - t0
|
||||
times[2] += t2 - t1
|
||||
return audio1
|
||||
|
||||
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
|
||||
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
|
||||
def pipeline(
|
||||
self,
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio,
|
||||
times,
|
||||
f0_up_key,
|
||||
f0_method,
|
||||
file_index,
|
||||
file_big_npy,
|
||||
index_rate,
|
||||
if_f0,
|
||||
f0_file=None,
|
||||
):
|
||||
if (
|
||||
file_big_npy != ""
|
||||
and file_index != ""
|
||||
and os.path.exists(file_big_npy) == True
|
||||
and os.path.exists(file_index) == True
|
||||
and index_rate != 0
|
||||
):
|
||||
try:
|
||||
index = faiss.read_index(file_index)
|
||||
big_npy = np.load(file_big_npy)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
index=big_npy=None
|
||||
index = big_npy = None
|
||||
else:
|
||||
index=big_npy=None
|
||||
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
|
||||
index = big_npy = None
|
||||
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
||||
opt_ts = []
|
||||
if(audio_pad.shape[0]>self.t_max):
|
||||
if audio_pad.shape[0] > self.t_max:
|
||||
audio_sum = np.zeros_like(audio)
|
||||
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
|
||||
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
|
||||
for i in range(self.window):
|
||||
audio_sum += audio_pad[i : i - self.window]
|
||||
for t in range(self.t_center, audio.shape[0], self.t_center):
|
||||
opt_ts.append(
|
||||
t
|
||||
- self.t_query
|
||||
+ np.where(
|
||||
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
||||
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
||||
)[0][0]
|
||||
)
|
||||
s = 0
|
||||
audio_opt=[]
|
||||
t=None
|
||||
t1=ttime()
|
||||
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
|
||||
p_len=audio_pad.shape[0]//self.window
|
||||
inp_f0=None
|
||||
if(hasattr(f0_file,'name') ==True):
|
||||
audio_opt = []
|
||||
t = None
|
||||
t1 = ttime()
|
||||
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
||||
p_len = audio_pad.shape[0] // self.window
|
||||
inp_f0 = None
|
||||
if hasattr(f0_file, "name") == True:
|
||||
try:
|
||||
with open(f0_file.name,"r")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
inp_f0=[]
|
||||
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
|
||||
inp_f0=np.array(inp_f0,dtype="float32")
|
||||
with open(f0_file.name, "r") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
inp_f0 = []
|
||||
for line in lines:
|
||||
inp_f0.append([float(i) for i in line.split(",")])
|
||||
inp_f0 = np.array(inp_f0, dtype="float32")
|
||||
except:
|
||||
traceback.print_exc()
|
||||
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
|
||||
pitch, pitchf=None,None
|
||||
if(if_f0==1):
|
||||
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
|
||||
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||||
pitch, pitchf = None, None
|
||||
if if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0)
|
||||
pitch = pitch[:p_len]
|
||||
pitchf = pitchf[:p_len]
|
||||
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
|
||||
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
|
||||
t2=ttime()
|
||||
times[1] += (t2 - t1)
|
||||
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
||||
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
||||
t2 = ttime()
|
||||
times[1] += t2 - t1
|
||||
for t in opt_ts:
|
||||
t=t//self.window*self.window
|
||||
if (if_f0 == 1):
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
t = t // self.window * self.window
|
||||
if if_f0 == 1:
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[s : t + self.t_pad2 + self.window],
|
||||
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
||||
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
else:
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[s : t + self.t_pad2 + self.window],
|
||||
None,
|
||||
None,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
s = t
|
||||
if (if_f0 == 1):
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
if if_f0 == 1:
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[t:],
|
||||
pitch[:, t // self.window :] if t is not None else pitch,
|
||||
pitchf[:, t // self.window :] if t is not None else pitchf,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
else:
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
audio_opt=np.concatenate(audio_opt)
|
||||
del pitch,pitchf,sid
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[t:],
|
||||
None,
|
||||
None,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
audio_opt = np.concatenate(audio_opt)
|
||||
del pitch, pitchf, sid
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return audio_opt
|
||||
|
@ -1,16 +1,18 @@
|
||||
import locale
|
||||
import json
|
||||
|
||||
|
||||
def load_language_list(language):
|
||||
with open(f"./locale/{language}.json", "r", encoding="utf-8") as f:
|
||||
language_list = json.load(f)
|
||||
return language_list
|
||||
|
||||
|
||||
class I18nAuto:
|
||||
def __init__(self, language=None):
|
||||
if language is None:
|
||||
language = 'auto'
|
||||
if language == 'auto':
|
||||
language = "auto"
|
||||
if language == "auto":
|
||||
language = locale.getdefaultlocale()[0]
|
||||
self.language = language
|
||||
print("Use Language:", language)
|
||||
|
Loading…
Reference in New Issue
Block a user