mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-04 03:38:58 +08:00
Remove part of the non-inference-related modules
This commit is contained in:
parent
df1a890ca1
commit
d6de82afef
833
infer-web.py
833
infer-web.py
@ -6,13 +6,6 @@ now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
load_dotenv()
|
||||
from infer.modules.vc.modules import VC
|
||||
from infer.modules.uvr5.modules import uvr
|
||||
from infer.lib.train.process_ckpt import (
|
||||
change_info,
|
||||
extract_small_model,
|
||||
merge,
|
||||
show_info,
|
||||
)
|
||||
from i18n.i18n import I18nAuto
|
||||
from configs.config import Config
|
||||
from sklearn.cluster import MiniBatchKMeans
|
||||
@ -451,8 +444,8 @@ def change_version19(sr2, if_f0_3, version19):
|
||||
to_return_sr2,
|
||||
)
|
||||
|
||||
|
||||
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
||||
# f0method8,pretrained_G14,pretrained_D15
|
||||
def change_f0(if_f0_3, sr2, version19):
|
||||
path_str = "" if version19 == "v1" else "_v2"
|
||||
return (
|
||||
{"visible": if_f0_3, "__type__": "update"},
|
||||
@ -461,324 +454,7 @@ def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D
|
||||
)
|
||||
|
||||
|
||||
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
||||
def click_train(
|
||||
exp_dir1,
|
||||
sr2,
|
||||
if_f0_3,
|
||||
spk_id5,
|
||||
save_epoch10,
|
||||
total_epoch11,
|
||||
batch_size12,
|
||||
if_save_latest13,
|
||||
pretrained_G14,
|
||||
pretrained_D15,
|
||||
gpus16,
|
||||
if_cache_gpu17,
|
||||
if_save_every_weights18,
|
||||
version19,
|
||||
):
|
||||
# 生成filelist
|
||||
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||||
os.makedirs(exp_dir, exist_ok=True)
|
||||
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
||||
feature_dir = (
|
||||
"%s/3_feature256" % (exp_dir)
|
||||
if version19 == "v1"
|
||||
else "%s/3_feature768" % (exp_dir)
|
||||
)
|
||||
if if_f0_3:
|
||||
f0_dir = "%s/2a_f0" % (exp_dir)
|
||||
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
||||
names = (
|
||||
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
||||
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
||||
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
||||
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
||||
)
|
||||
else:
|
||||
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
||||
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
||||
)
|
||||
opt = []
|
||||
for name in names:
|
||||
if if_f0_3:
|
||||
opt.append(
|
||||
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
||||
% (
|
||||
gt_wavs_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
feature_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
f0_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
f0nsf_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
spk_id5,
|
||||
)
|
||||
)
|
||||
else:
|
||||
opt.append(
|
||||
"%s/%s.wav|%s/%s.npy|%s"
|
||||
% (
|
||||
gt_wavs_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
feature_dir.replace("\\", "\\\\"),
|
||||
name,
|
||||
spk_id5,
|
||||
)
|
||||
)
|
||||
fea_dim = 256 if version19 == "v1" else 768
|
||||
if if_f0_3:
|
||||
for _ in range(2):
|
||||
opt.append(
|
||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
||||
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
||||
)
|
||||
else:
|
||||
for _ in range(2):
|
||||
opt.append(
|
||||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
||||
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
||||
)
|
||||
shuffle(opt)
|
||||
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
||||
f.write("\n".join(opt))
|
||||
logger.debug("Write filelist done")
|
||||
# 生成config#无需生成config
|
||||
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||||
logger.info("Use gpus: %s", str(gpus16))
|
||||
if pretrained_G14 == "":
|
||||
logger.info("No pretrained Generator")
|
||||
if pretrained_D15 == "":
|
||||
logger.info("No pretrained Discriminator")
|
||||
if version19 == "v1" or sr2 == "40k":
|
||||
config_path = "v1/%s.json" % sr2
|
||||
else:
|
||||
config_path = "v2/%s.json" % sr2
|
||||
config_save_path = os.path.join(exp_dir, "config.json")
|
||||
if not pathlib.Path(config_save_path).exists():
|
||||
with open(config_save_path, "w", encoding="utf-8") as f:
|
||||
json.dump(
|
||||
config.json_config[config_path],
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4,
|
||||
sort_keys=True,
|
||||
)
|
||||
f.write("\n")
|
||||
if gpus16:
|
||||
cmd = (
|
||||
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
||||
% (
|
||||
config.python_cmd,
|
||||
exp_dir1,
|
||||
sr2,
|
||||
1 if if_f0_3 else 0,
|
||||
batch_size12,
|
||||
gpus16,
|
||||
total_epoch11,
|
||||
save_epoch10,
|
||||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
||||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
||||
1 if if_save_latest13 == i18n("是") else 0,
|
||||
1 if if_cache_gpu17 == i18n("是") else 0,
|
||||
1 if if_save_every_weights18 == i18n("是") else 0,
|
||||
version19,
|
||||
)
|
||||
)
|
||||
else:
|
||||
cmd = (
|
||||
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
||||
% (
|
||||
config.python_cmd,
|
||||
exp_dir1,
|
||||
sr2,
|
||||
1 if if_f0_3 else 0,
|
||||
batch_size12,
|
||||
total_epoch11,
|
||||
save_epoch10,
|
||||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
||||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
||||
1 if if_save_latest13 == i18n("是") else 0,
|
||||
1 if if_cache_gpu17 == i18n("是") else 0,
|
||||
1 if if_save_every_weights18 == i18n("是") else 0,
|
||||
version19,
|
||||
)
|
||||
)
|
||||
logger.info("Execute: " + cmd)
|
||||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||||
p.wait()
|
||||
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
||||
|
||||
|
||||
# but4.click(train_index, [exp_dir1], info3)
|
||||
def train_index(exp_dir1, version19):
|
||||
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||||
exp_dir = "logs/%s" % (exp_dir1)
|
||||
os.makedirs(exp_dir, exist_ok=True)
|
||||
feature_dir = (
|
||||
"%s/3_feature256" % (exp_dir)
|
||||
if version19 == "v1"
|
||||
else "%s/3_feature768" % (exp_dir)
|
||||
)
|
||||
if not os.path.exists(feature_dir):
|
||||
return "请先进行特征提取!"
|
||||
listdir_res = list(os.listdir(feature_dir))
|
||||
if len(listdir_res) == 0:
|
||||
return "请先进行特征提取!"
|
||||
infos = []
|
||||
npys = []
|
||||
for name in sorted(listdir_res):
|
||||
phone = np.load("%s/%s" % (feature_dir, name))
|
||||
npys.append(phone)
|
||||
big_npy = np.concatenate(npys, 0)
|
||||
big_npy_idx = np.arange(big_npy.shape[0])
|
||||
np.random.shuffle(big_npy_idx)
|
||||
big_npy = big_npy[big_npy_idx]
|
||||
if big_npy.shape[0] > 2e5:
|
||||
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
||||
yield "\n".join(infos)
|
||||
try:
|
||||
big_npy = (
|
||||
MiniBatchKMeans(
|
||||
n_clusters=10000,
|
||||
verbose=True,
|
||||
batch_size=256 * config.n_cpu,
|
||||
compute_labels=False,
|
||||
init="random",
|
||||
)
|
||||
.fit(big_npy)
|
||||
.cluster_centers_
|
||||
)
|
||||
except:
|
||||
info = traceback.format_exc()
|
||||
logger.info(info)
|
||||
infos.append(info)
|
||||
yield "\n".join(infos)
|
||||
|
||||
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
||||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||||
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
||||
yield "\n".join(infos)
|
||||
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
||||
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
||||
infos.append("training")
|
||||
yield "\n".join(infos)
|
||||
index_ivf = faiss.extract_index_ivf(index) #
|
||||
index_ivf.nprobe = 1
|
||||
index.train(big_npy)
|
||||
faiss.write_index(
|
||||
index,
|
||||
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||||
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||||
)
|
||||
infos.append("adding")
|
||||
yield "\n".join(infos)
|
||||
batch_size_add = 8192
|
||||
for i in range(0, big_npy.shape[0], batch_size_add):
|
||||
index.add(big_npy[i : i + batch_size_add])
|
||||
faiss.write_index(
|
||||
index,
|
||||
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||||
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||||
)
|
||||
infos.append(
|
||||
"成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||||
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
||||
)
|
||||
try:
|
||||
link = os.link if platform.system() == "Windows" else os.symlink
|
||||
link(
|
||||
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||||
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||||
"%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||||
% (
|
||||
outside_index_root,
|
||||
exp_dir1,
|
||||
n_ivf,
|
||||
index_ivf.nprobe,
|
||||
exp_dir1,
|
||||
version19,
|
||||
),
|
||||
)
|
||||
infos.append("链接索引到外部-%s" % (outside_index_root))
|
||||
except:
|
||||
infos.append("链接索引到外部-%s失败" % (outside_index_root))
|
||||
|
||||
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
||||
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
||||
yield "\n".join(infos)
|
||||
|
||||
|
||||
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
||||
def train1key(
|
||||
exp_dir1,
|
||||
sr2,
|
||||
if_f0_3,
|
||||
trainset_dir4,
|
||||
spk_id5,
|
||||
np7,
|
||||
f0method8,
|
||||
save_epoch10,
|
||||
total_epoch11,
|
||||
batch_size12,
|
||||
if_save_latest13,
|
||||
pretrained_G14,
|
||||
pretrained_D15,
|
||||
gpus16,
|
||||
if_cache_gpu17,
|
||||
if_save_every_weights18,
|
||||
version19,
|
||||
gpus_rmvpe,
|
||||
):
|
||||
infos = []
|
||||
|
||||
def get_info_str(strr):
|
||||
infos.append(strr)
|
||||
return "\n".join(infos)
|
||||
|
||||
# step1:处理数据
|
||||
yield get_info_str(i18n("step1:正在处理数据"))
|
||||
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
||||
|
||||
# step2a:提取音高
|
||||
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
||||
[
|
||||
get_info_str(_)
|
||||
for _ in extract_f0_feature(
|
||||
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
||||
)
|
||||
]
|
||||
|
||||
# step3a:训练模型
|
||||
yield get_info_str(i18n("step3a:正在训练模型"))
|
||||
click_train(
|
||||
exp_dir1,
|
||||
sr2,
|
||||
if_f0_3,
|
||||
spk_id5,
|
||||
save_epoch10,
|
||||
total_epoch11,
|
||||
batch_size12,
|
||||
if_save_latest13,
|
||||
pretrained_G14,
|
||||
pretrained_D15,
|
||||
gpus16,
|
||||
if_cache_gpu17,
|
||||
if_save_every_weights18,
|
||||
version19,
|
||||
)
|
||||
yield get_info_str(
|
||||
i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
|
||||
)
|
||||
|
||||
# step3b:训练索引
|
||||
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
||||
yield get_info_str(i18n("全流程结束!"))
|
||||
|
||||
|
||||
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
||||
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
||||
def change_info_(ckpt_path):
|
||||
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
||||
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
||||
@ -1015,11 +691,6 @@ with gr.Blocks(title="RVC WebUI") as app:
|
||||
outputs=file_index4,
|
||||
api_name="infer_refresh_batch",
|
||||
)
|
||||
# file_big_npy2 = gr.Textbox(
|
||||
# label=i18n("特征文件路径"),
|
||||
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
||||
# interactive=True,
|
||||
# )
|
||||
|
||||
with gr.Column():
|
||||
resample_sr1 = gr.Slider(
|
||||
@ -1110,504 +781,6 @@ with gr.Blocks(title="RVC WebUI") as app:
|
||||
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
||||
api_name="infer_change_voice",
|
||||
)
|
||||
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
dir_wav_input = gr.Textbox(
|
||||
label=i18n("输入待处理音频文件夹路径"),
|
||||
placeholder="C:\\Users\\Desktop\\todo-songs",
|
||||
)
|
||||
wav_inputs = gr.File(
|
||||
file_count="multiple",
|
||||
label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),
|
||||
)
|
||||
with gr.Column():
|
||||
model_choose = gr.Dropdown(
|
||||
label=i18n("模型"), choices=uvr5_names
|
||||
)
|
||||
agg = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=20,
|
||||
step=1,
|
||||
label="人声提取激进程度",
|
||||
value=10,
|
||||
interactive=True,
|
||||
visible=False, # 先不开放调整
|
||||
)
|
||||
opt_vocal_root = gr.Textbox(
|
||||
label=i18n("指定输出主人声文件夹"), value="opt"
|
||||
)
|
||||
opt_ins_root = gr.Textbox(
|
||||
label=i18n("指定输出非主人声文件夹"), value="opt"
|
||||
)
|
||||
format0 = gr.Radio(
|
||||
label=i18n("导出文件格式"),
|
||||
choices=["wav", "flac", "mp3", "m4a"],
|
||||
value="flac",
|
||||
interactive=True,
|
||||
)
|
||||
but2 = gr.Button(i18n("转换"), variant="primary")
|
||||
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
||||
but2.click(
|
||||
uvr,
|
||||
[
|
||||
model_choose,
|
||||
dir_wav_input,
|
||||
opt_vocal_root,
|
||||
wav_inputs,
|
||||
opt_ins_root,
|
||||
agg,
|
||||
format0,
|
||||
],
|
||||
[vc_output4],
|
||||
api_name="uvr_convert",
|
||||
)
|
||||
with gr.TabItem(i18n("训练")):
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
||||
sr2 = gr.Radio(
|
||||
label=i18n("目标采样率"),
|
||||
choices=["40k", "48k"],
|
||||
value="40k",
|
||||
interactive=True,
|
||||
)
|
||||
if_f0_3 = gr.Radio(
|
||||
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
||||
choices=[True, False],
|
||||
value=True,
|
||||
interactive=True,
|
||||
)
|
||||
version19 = gr.Radio(
|
||||
label=i18n("版本"),
|
||||
choices=["v1", "v2"],
|
||||
value="v2",
|
||||
interactive=True,
|
||||
visible=True,
|
||||
)
|
||||
np7 = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=config.n_cpu,
|
||||
step=1,
|
||||
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
||||
value=int(np.ceil(config.n_cpu / 1.5)),
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
trainset_dir4 = gr.Textbox(
|
||||
label=i18n("输入训练文件夹路径"),
|
||||
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
|
||||
)
|
||||
spk_id5 = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=4,
|
||||
step=1,
|
||||
label=i18n("请指定说话人id"),
|
||||
value=0,
|
||||
interactive=True,
|
||||
)
|
||||
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
||||
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
||||
but1.click(
|
||||
preprocess_dataset,
|
||||
[trainset_dir4, exp_dir1, sr2, np7],
|
||||
[info1],
|
||||
api_name="train_preprocess",
|
||||
)
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
gpus6 = gr.Textbox(
|
||||
label=i18n(
|
||||
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
||||
),
|
||||
value=gpus,
|
||||
interactive=True,
|
||||
visible=F0GPUVisible,
|
||||
)
|
||||
gpu_info9 = gr.Textbox(
|
||||
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
||||
)
|
||||
with gr.Column():
|
||||
f0method8 = gr.Radio(
|
||||
label=i18n(
|
||||
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
||||
),
|
||||
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
||||
value="rmvpe_gpu",
|
||||
interactive=True,
|
||||
)
|
||||
gpus_rmvpe = gr.Textbox(
|
||||
label=i18n(
|
||||
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
||||
),
|
||||
value="%s-%s" % (gpus, gpus),
|
||||
interactive=True,
|
||||
visible=F0GPUVisible,
|
||||
)
|
||||
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
||||
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||
f0method8.change(
|
||||
fn=change_f0_method,
|
||||
inputs=[f0method8],
|
||||
outputs=[gpus_rmvpe],
|
||||
)
|
||||
but2.click(
|
||||
extract_f0_feature,
|
||||
[
|
||||
gpus6,
|
||||
np7,
|
||||
f0method8,
|
||||
if_f0_3,
|
||||
exp_dir1,
|
||||
version19,
|
||||
gpus_rmvpe,
|
||||
],
|
||||
[info2],
|
||||
api_name="train_extract_f0_feature",
|
||||
)
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
||||
with gr.Row():
|
||||
save_epoch10 = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=50,
|
||||
step=1,
|
||||
label=i18n("保存频率save_every_epoch"),
|
||||
value=5,
|
||||
interactive=True,
|
||||
)
|
||||
total_epoch11 = gr.Slider(
|
||||
minimum=2,
|
||||
maximum=1000,
|
||||
step=1,
|
||||
label=i18n("总训练轮数total_epoch"),
|
||||
value=20,
|
||||
interactive=True,
|
||||
)
|
||||
batch_size12 = gr.Slider(
|
||||
minimum=1,
|
||||
maximum=40,
|
||||
step=1,
|
||||
label=i18n("每张显卡的batch_size"),
|
||||
value=default_batch_size,
|
||||
interactive=True,
|
||||
)
|
||||
if_save_latest13 = gr.Radio(
|
||||
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
||||
choices=[i18n("是"), i18n("否")],
|
||||
value=i18n("否"),
|
||||
interactive=True,
|
||||
)
|
||||
if_cache_gpu17 = gr.Radio(
|
||||
label=i18n(
|
||||
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
||||
),
|
||||
choices=[i18n("是"), i18n("否")],
|
||||
value=i18n("否"),
|
||||
interactive=True,
|
||||
)
|
||||
if_save_every_weights18 = gr.Radio(
|
||||
label=i18n(
|
||||
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
||||
),
|
||||
choices=[i18n("是"), i18n("否")],
|
||||
value=i18n("否"),
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
pretrained_G14 = gr.Textbox(
|
||||
label=i18n("加载预训练底模G路径"),
|
||||
value="assets/pretrained_v2/f0G40k.pth",
|
||||
interactive=True,
|
||||
)
|
||||
pretrained_D15 = gr.Textbox(
|
||||
label=i18n("加载预训练底模D路径"),
|
||||
value="assets/pretrained_v2/f0D40k.pth",
|
||||
interactive=True,
|
||||
)
|
||||
sr2.change(
|
||||
change_sr2,
|
||||
[sr2, if_f0_3, version19],
|
||||
[pretrained_G14, pretrained_D15],
|
||||
)
|
||||
version19.change(
|
||||
change_version19,
|
||||
[sr2, if_f0_3, version19],
|
||||
[pretrained_G14, pretrained_D15, sr2],
|
||||
)
|
||||
if_f0_3.change(
|
||||
change_f0,
|
||||
[if_f0_3, sr2, version19],
|
||||
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
|
||||
)
|
||||
gpus16 = gr.Textbox(
|
||||
label=i18n(
|
||||
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
||||
),
|
||||
value=gpus,
|
||||
interactive=True,
|
||||
)
|
||||
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
||||
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
||||
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
||||
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
||||
but3.click(
|
||||
click_train,
|
||||
[
|
||||
exp_dir1,
|
||||
sr2,
|
||||
if_f0_3,
|
||||
spk_id5,
|
||||
save_epoch10,
|
||||
total_epoch11,
|
||||
batch_size12,
|
||||
if_save_latest13,
|
||||
pretrained_G14,
|
||||
pretrained_D15,
|
||||
gpus16,
|
||||
if_cache_gpu17,
|
||||
if_save_every_weights18,
|
||||
version19,
|
||||
],
|
||||
info3,
|
||||
api_name="train_start",
|
||||
)
|
||||
but4.click(train_index, [exp_dir1, version19], info3)
|
||||
but5.click(
|
||||
train1key,
|
||||
[
|
||||
exp_dir1,
|
||||
sr2,
|
||||
if_f0_3,
|
||||
trainset_dir4,
|
||||
spk_id5,
|
||||
np7,
|
||||
f0method8,
|
||||
save_epoch10,
|
||||
total_epoch11,
|
||||
batch_size12,
|
||||
if_save_latest13,
|
||||
pretrained_G14,
|
||||
pretrained_D15,
|
||||
gpus16,
|
||||
if_cache_gpu17,
|
||||
if_save_every_weights18,
|
||||
version19,
|
||||
gpus_rmvpe,
|
||||
],
|
||||
info3,
|
||||
api_name="train_start_all",
|
||||
)
|
||||
|
||||
with gr.TabItem(i18n("ckpt处理")):
|
||||
with gr.Group():
|
||||
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
||||
with gr.Row():
|
||||
ckpt_a = gr.Textbox(
|
||||
label=i18n("A模型路径"), value="", interactive=True
|
||||
)
|
||||
ckpt_b = gr.Textbox(
|
||||
label=i18n("B模型路径"), value="", interactive=True
|
||||
)
|
||||
alpha_a = gr.Slider(
|
||||
minimum=0,
|
||||
maximum=1,
|
||||
label=i18n("A模型权重"),
|
||||
value=0.5,
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
sr_ = gr.Radio(
|
||||
label=i18n("目标采样率"),
|
||||
choices=["40k", "48k"],
|
||||
value="40k",
|
||||
interactive=True,
|
||||
)
|
||||
if_f0_ = gr.Radio(
|
||||
label=i18n("模型是否带音高指导"),
|
||||
choices=[i18n("是"), i18n("否")],
|
||||
value=i18n("是"),
|
||||
interactive=True,
|
||||
)
|
||||
info__ = gr.Textbox(
|
||||
label=i18n("要置入的模型信息"),
|
||||
value="",
|
||||
max_lines=8,
|
||||
interactive=True,
|
||||
)
|
||||
name_to_save0 = gr.Textbox(
|
||||
label=i18n("保存的模型名不带后缀"),
|
||||
value="",
|
||||
max_lines=1,
|
||||
interactive=True,
|
||||
)
|
||||
version_2 = gr.Radio(
|
||||
label=i18n("模型版本型号"),
|
||||
choices=["v1", "v2"],
|
||||
value="v1",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
but6 = gr.Button(i18n("融合"), variant="primary")
|
||||
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||
but6.click(
|
||||
merge,
|
||||
[
|
||||
ckpt_a,
|
||||
ckpt_b,
|
||||
alpha_a,
|
||||
sr_,
|
||||
if_f0_,
|
||||
info__,
|
||||
name_to_save0,
|
||||
version_2,
|
||||
],
|
||||
info4,
|
||||
api_name="ckpt_merge",
|
||||
) # def merge(path1,path2,alpha1,sr,f0,info):
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
|
||||
)
|
||||
with gr.Row():
|
||||
ckpt_path0 = gr.Textbox(
|
||||
label=i18n("模型路径"), value="", interactive=True
|
||||
)
|
||||
info_ = gr.Textbox(
|
||||
label=i18n("要改的模型信息"),
|
||||
value="",
|
||||
max_lines=8,
|
||||
interactive=True,
|
||||
)
|
||||
name_to_save1 = gr.Textbox(
|
||||
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
||||
value="",
|
||||
max_lines=8,
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Row():
|
||||
but7 = gr.Button(i18n("修改"), variant="primary")
|
||||
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||
but7.click(
|
||||
change_info,
|
||||
[ckpt_path0, info_, name_to_save1],
|
||||
info5,
|
||||
api_name="ckpt_modify",
|
||||
)
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
|
||||
)
|
||||
with gr.Row():
|
||||
ckpt_path1 = gr.Textbox(
|
||||
label=i18n("模型路径"), value="", interactive=True
|
||||
)
|
||||
but8 = gr.Button(i18n("查看"), variant="primary")
|
||||
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
value=i18n(
|
||||
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
||||
)
|
||||
)
|
||||
with gr.Row():
|
||||
ckpt_path2 = gr.Textbox(
|
||||
label=i18n("模型路径"),
|
||||
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
||||
interactive=True,
|
||||
)
|
||||
save_name = gr.Textbox(
|
||||
label=i18n("保存名"), value="", interactive=True
|
||||
)
|
||||
sr__ = gr.Radio(
|
||||
label=i18n("目标采样率"),
|
||||
choices=["32k", "40k", "48k"],
|
||||
value="40k",
|
||||
interactive=True,
|
||||
)
|
||||
if_f0__ = gr.Radio(
|
||||
label=i18n("模型是否带音高指导,1是0否"),
|
||||
choices=["1", "0"],
|
||||
value="1",
|
||||
interactive=True,
|
||||
)
|
||||
version_1 = gr.Radio(
|
||||
label=i18n("模型版本型号"),
|
||||
choices=["v1", "v2"],
|
||||
value="v2",
|
||||
interactive=True,
|
||||
)
|
||||
info___ = gr.Textbox(
|
||||
label=i18n("要置入的模型信息"),
|
||||
value="",
|
||||
max_lines=8,
|
||||
interactive=True,
|
||||
)
|
||||
but9 = gr.Button(i18n("提取"), variant="primary")
|
||||
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||||
ckpt_path2.change(
|
||||
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
||||
)
|
||||
but9.click(
|
||||
extract_small_model,
|
||||
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
||||
info7,
|
||||
api_name="ckpt_extract",
|
||||
)
|
||||
|
||||
with gr.TabItem(i18n("Onnx导出")):
|
||||
with gr.Row():
|
||||
ckpt_dir = gr.Textbox(
|
||||
label=i18n("RVC模型路径"), value="", interactive=True
|
||||
)
|
||||
with gr.Row():
|
||||
onnx_dir = gr.Textbox(
|
||||
label=i18n("Onnx输出路径"), value="", interactive=True
|
||||
)
|
||||
with gr.Row():
|
||||
infoOnnx = gr.Label(label="info")
|
||||
with gr.Row():
|
||||
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
||||
butOnnx.click(
|
||||
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
|
||||
)
|
||||
|
||||
tab_faq = i18n("常见问题解答")
|
||||
with gr.TabItem(tab_faq):
|
||||
try:
|
||||
if tab_faq == "常见问题解答":
|
||||
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
|
||||
info = f.read()
|
||||
else:
|
||||
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
|
||||
info = f.read()
|
||||
gr.Markdown(value=info)
|
||||
except:
|
||||
gr.Markdown(traceback.format_exc())
|
||||
|
||||
if config.iscolab:
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
||||
else:
|
||||
|
@ -1,517 +0,0 @@
|
||||
import os
|
||||
import traceback
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.utils.data
|
||||
|
||||
from infer.lib.train.mel_processing import spectrogram_torch
|
||||
from infer.lib.train.utils import load_filepaths_and_text, load_wav_to_torch
|
||||
|
||||
|
||||
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, audiopaths_and_text, hparams):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self._filter()
|
||||
|
||||
def _filter(self):
|
||||
"""
|
||||
Filter text & store spec lengths
|
||||
"""
|
||||
# Store spectrogram lengths for Bucketing
|
||||
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
||||
# spec_length = wav_length // hop_length
|
||||
audiopaths_and_text_new = []
|
||||
lengths = []
|
||||
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
||||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||||
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
||||
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
||||
self.audiopaths_and_text = audiopaths_and_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def get_audio_text_pair(self, audiopath_and_text):
|
||||
# separate filename and text
|
||||
file = audiopath_and_text[0]
|
||||
phone = audiopath_and_text[1]
|
||||
pitch = audiopath_and_text[2]
|
||||
pitchf = audiopath_and_text[3]
|
||||
dv = audiopath_and_text[4]
|
||||
|
||||
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
||||
spec, wav = self.get_audio(file)
|
||||
dv = self.get_sid(dv)
|
||||
|
||||
len_phone = phone.size()[0]
|
||||
len_spec = spec.size()[-1]
|
||||
# print(123,phone.shape,pitch.shape,spec.shape)
|
||||
if len_phone != len_spec:
|
||||
len_min = min(len_phone, len_spec)
|
||||
# amor
|
||||
len_wav = len_min * self.hop_length
|
||||
|
||||
spec = spec[:, :len_min]
|
||||
wav = wav[:, :len_wav]
|
||||
|
||||
phone = phone[:len_min, :]
|
||||
pitch = pitch[:len_min]
|
||||
pitchf = pitchf[:len_min]
|
||||
|
||||
return (spec, wav, phone, pitch, pitchf, dv)
|
||||
|
||||
def get_labels(self, phone, pitch, pitchf):
|
||||
phone = np.load(phone)
|
||||
phone = np.repeat(phone, 2, axis=0)
|
||||
pitch = np.load(pitch)
|
||||
pitchf = np.load(pitchf)
|
||||
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
||||
# print(234,phone.shape,pitch.shape)
|
||||
phone = phone[:n_num, :]
|
||||
pitch = pitch[:n_num]
|
||||
pitchf = pitchf[:n_num]
|
||||
phone = torch.FloatTensor(phone)
|
||||
pitch = torch.LongTensor(pitch)
|
||||
pitchf = torch.FloatTensor(pitchf)
|
||||
return phone, pitch, pitchf
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio, sampling_rate = load_wav_to_torch(filename)
|
||||
if sampling_rate != self.sampling_rate:
|
||||
raise ValueError(
|
||||
"{} SR doesn't match target {} SR".format(
|
||||
sampling_rate, self.sampling_rate
|
||||
)
|
||||
)
|
||||
audio_norm = audio
|
||||
# audio_norm = audio / self.max_wav_value
|
||||
# audio_norm = audio / np.abs(audio).max()
|
||||
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec_filename = filename.replace(".wav", ".spec.pt")
|
||||
if os.path.exists(spec_filename):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
else:
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
return spec, audio_norm
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
||||
|
||||
class TextAudioCollateMultiNSFsid:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text and aduio
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized]
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
||||
)
|
||||
|
||||
max_spec_len = max([x[0].size(1) for x in batch])
|
||||
max_wave_len = max([x[1].size(1) for x in batch])
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
wave_lengths = torch.LongTensor(len(batch))
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
||||
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
||||
spec_padded.zero_()
|
||||
wave_padded.zero_()
|
||||
|
||||
max_phone_len = max([x[2].size(0) for x in batch])
|
||||
phone_lengths = torch.LongTensor(len(batch))
|
||||
phone_padded = torch.FloatTensor(
|
||||
len(batch), max_phone_len, batch[0][2].shape[1]
|
||||
) # (spec, wav, phone, pitch)
|
||||
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
||||
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
||||
phone_padded.zero_()
|
||||
pitch_padded.zero_()
|
||||
pitchf_padded.zero_()
|
||||
# dv = torch.FloatTensor(len(batch), 256)#gin=256
|
||||
sid = torch.LongTensor(len(batch))
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
spec = row[0]
|
||||
spec_padded[i, :, : spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wave = row[1]
|
||||
wave_padded[i, :, : wave.size(1)] = wave
|
||||
wave_lengths[i] = wave.size(1)
|
||||
|
||||
phone = row[2]
|
||||
phone_padded[i, : phone.size(0), :] = phone
|
||||
phone_lengths[i] = phone.size(0)
|
||||
|
||||
pitch = row[3]
|
||||
pitch_padded[i, : pitch.size(0)] = pitch
|
||||
pitchf = row[4]
|
||||
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
||||
|
||||
# dv[i] = row[5]
|
||||
sid[i] = row[5]
|
||||
|
||||
return (
|
||||
phone_padded,
|
||||
phone_lengths,
|
||||
pitch_padded,
|
||||
pitchf_padded,
|
||||
spec_padded,
|
||||
spec_lengths,
|
||||
wave_padded,
|
||||
wave_lengths,
|
||||
# dv
|
||||
sid,
|
||||
)
|
||||
|
||||
|
||||
class TextAudioLoader(torch.utils.data.Dataset):
|
||||
"""
|
||||
1) loads audio, text pairs
|
||||
2) normalizes text and converts them to sequences of integers
|
||||
3) computes spectrograms from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, audiopaths_and_text, hparams):
|
||||
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
||||
self.max_wav_value = hparams.max_wav_value
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.filter_length = hparams.filter_length
|
||||
self.hop_length = hparams.hop_length
|
||||
self.win_length = hparams.win_length
|
||||
self.sampling_rate = hparams.sampling_rate
|
||||
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
||||
self._filter()
|
||||
|
||||
def _filter(self):
|
||||
"""
|
||||
Filter text & store spec lengths
|
||||
"""
|
||||
# Store spectrogram lengths for Bucketing
|
||||
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
||||
# spec_length = wav_length // hop_length
|
||||
audiopaths_and_text_new = []
|
||||
lengths = []
|
||||
for audiopath, text, dv in self.audiopaths_and_text:
|
||||
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||||
audiopaths_and_text_new.append([audiopath, text, dv])
|
||||
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
||||
self.audiopaths_and_text = audiopaths_and_text_new
|
||||
self.lengths = lengths
|
||||
|
||||
def get_sid(self, sid):
|
||||
sid = torch.LongTensor([int(sid)])
|
||||
return sid
|
||||
|
||||
def get_audio_text_pair(self, audiopath_and_text):
|
||||
# separate filename and text
|
||||
file = audiopath_and_text[0]
|
||||
phone = audiopath_and_text[1]
|
||||
dv = audiopath_and_text[2]
|
||||
|
||||
phone = self.get_labels(phone)
|
||||
spec, wav = self.get_audio(file)
|
||||
dv = self.get_sid(dv)
|
||||
|
||||
len_phone = phone.size()[0]
|
||||
len_spec = spec.size()[-1]
|
||||
if len_phone != len_spec:
|
||||
len_min = min(len_phone, len_spec)
|
||||
len_wav = len_min * self.hop_length
|
||||
spec = spec[:, :len_min]
|
||||
wav = wav[:, :len_wav]
|
||||
phone = phone[:len_min, :]
|
||||
return (spec, wav, phone, dv)
|
||||
|
||||
def get_labels(self, phone):
|
||||
phone = np.load(phone)
|
||||
phone = np.repeat(phone, 2, axis=0)
|
||||
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
||||
phone = phone[:n_num, :]
|
||||
phone = torch.FloatTensor(phone)
|
||||
return phone
|
||||
|
||||
def get_audio(self, filename):
|
||||
audio, sampling_rate = load_wav_to_torch(filename)
|
||||
if sampling_rate != self.sampling_rate:
|
||||
raise ValueError(
|
||||
"{} SR doesn't match target {} SR".format(
|
||||
sampling_rate, self.sampling_rate
|
||||
)
|
||||
)
|
||||
audio_norm = audio
|
||||
# audio_norm = audio / self.max_wav_value
|
||||
# audio_norm = audio / np.abs(audio).max()
|
||||
|
||||
audio_norm = audio_norm.unsqueeze(0)
|
||||
spec_filename = filename.replace(".wav", ".spec.pt")
|
||||
if os.path.exists(spec_filename):
|
||||
try:
|
||||
spec = torch.load(spec_filename)
|
||||
except:
|
||||
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
else:
|
||||
spec = spectrogram_torch(
|
||||
audio_norm,
|
||||
self.filter_length,
|
||||
self.sampling_rate,
|
||||
self.hop_length,
|
||||
self.win_length,
|
||||
center=False,
|
||||
)
|
||||
spec = torch.squeeze(spec, 0)
|
||||
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
||||
return spec, audio_norm
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
||||
|
||||
def __len__(self):
|
||||
return len(self.audiopaths_and_text)
|
||||
|
||||
|
||||
class TextAudioCollate:
|
||||
"""Zero-pads model inputs and targets"""
|
||||
|
||||
def __init__(self, return_ids=False):
|
||||
self.return_ids = return_ids
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Collate's training batch from normalized text and aduio
|
||||
PARAMS
|
||||
------
|
||||
batch: [text_normalized, spec_normalized, wav_normalized]
|
||||
"""
|
||||
# Right zero-pad all one-hot text sequences to max input length
|
||||
_, ids_sorted_decreasing = torch.sort(
|
||||
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
||||
)
|
||||
|
||||
max_spec_len = max([x[0].size(1) for x in batch])
|
||||
max_wave_len = max([x[1].size(1) for x in batch])
|
||||
spec_lengths = torch.LongTensor(len(batch))
|
||||
wave_lengths = torch.LongTensor(len(batch))
|
||||
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
||||
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
||||
spec_padded.zero_()
|
||||
wave_padded.zero_()
|
||||
|
||||
max_phone_len = max([x[2].size(0) for x in batch])
|
||||
phone_lengths = torch.LongTensor(len(batch))
|
||||
phone_padded = torch.FloatTensor(
|
||||
len(batch), max_phone_len, batch[0][2].shape[1]
|
||||
)
|
||||
phone_padded.zero_()
|
||||
sid = torch.LongTensor(len(batch))
|
||||
|
||||
for i in range(len(ids_sorted_decreasing)):
|
||||
row = batch[ids_sorted_decreasing[i]]
|
||||
|
||||
spec = row[0]
|
||||
spec_padded[i, :, : spec.size(1)] = spec
|
||||
spec_lengths[i] = spec.size(1)
|
||||
|
||||
wave = row[1]
|
||||
wave_padded[i, :, : wave.size(1)] = wave
|
||||
wave_lengths[i] = wave.size(1)
|
||||
|
||||
phone = row[2]
|
||||
phone_padded[i, : phone.size(0), :] = phone
|
||||
phone_lengths[i] = phone.size(0)
|
||||
|
||||
sid[i] = row[3]
|
||||
|
||||
return (
|
||||
phone_padded,
|
||||
phone_lengths,
|
||||
spec_padded,
|
||||
spec_lengths,
|
||||
wave_padded,
|
||||
wave_lengths,
|
||||
sid,
|
||||
)
|
||||
|
||||
|
||||
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||
"""
|
||||
Maintain similar input lengths in a batch.
|
||||
Length groups are specified by boundaries.
|
||||
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
||||
|
||||
It removes samples which are not included in the boundaries.
|
||||
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset,
|
||||
batch_size,
|
||||
boundaries,
|
||||
num_replicas=None,
|
||||
rank=None,
|
||||
shuffle=True,
|
||||
):
|
||||
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||||
self.lengths = dataset.lengths
|
||||
self.batch_size = batch_size
|
||||
self.boundaries = boundaries
|
||||
|
||||
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
||||
self.total_size = sum(self.num_samples_per_bucket)
|
||||
self.num_samples = self.total_size // self.num_replicas
|
||||
|
||||
def _create_buckets(self):
|
||||
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
||||
for i in range(len(self.lengths)):
|
||||
length = self.lengths[i]
|
||||
idx_bucket = self._bisect(length)
|
||||
if idx_bucket != -1:
|
||||
buckets[idx_bucket].append(i)
|
||||
|
||||
for i in range(len(buckets) - 1, -1, -1): #
|
||||
if len(buckets[i]) == 0:
|
||||
buckets.pop(i)
|
||||
self.boundaries.pop(i + 1)
|
||||
|
||||
num_samples_per_bucket = []
|
||||
for i in range(len(buckets)):
|
||||
len_bucket = len(buckets[i])
|
||||
total_batch_size = self.num_replicas * self.batch_size
|
||||
rem = (
|
||||
total_batch_size - (len_bucket % total_batch_size)
|
||||
) % total_batch_size
|
||||
num_samples_per_bucket.append(len_bucket + rem)
|
||||
return buckets, num_samples_per_bucket
|
||||
|
||||
def __iter__(self):
|
||||
# deterministically shuffle based on epoch
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.epoch)
|
||||
|
||||
indices = []
|
||||
if self.shuffle:
|
||||
for bucket in self.buckets:
|
||||
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
||||
else:
|
||||
for bucket in self.buckets:
|
||||
indices.append(list(range(len(bucket))))
|
||||
|
||||
batches = []
|
||||
for i in range(len(self.buckets)):
|
||||
bucket = self.buckets[i]
|
||||
len_bucket = len(bucket)
|
||||
ids_bucket = indices[i]
|
||||
num_samples_bucket = self.num_samples_per_bucket[i]
|
||||
|
||||
# add extra samples to make it evenly divisible
|
||||
rem = num_samples_bucket - len_bucket
|
||||
ids_bucket = (
|
||||
ids_bucket
|
||||
+ ids_bucket * (rem // len_bucket)
|
||||
+ ids_bucket[: (rem % len_bucket)]
|
||||
)
|
||||
|
||||
# subsample
|
||||
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
||||
|
||||
# batching
|
||||
for j in range(len(ids_bucket) // self.batch_size):
|
||||
batch = [
|
||||
bucket[idx]
|
||||
for idx in ids_bucket[
|
||||
j * self.batch_size : (j + 1) * self.batch_size
|
||||
]
|
||||
]
|
||||
batches.append(batch)
|
||||
|
||||
if self.shuffle:
|
||||
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
||||
batches = [batches[i] for i in batch_ids]
|
||||
self.batches = batches
|
||||
|
||||
assert len(self.batches) * self.batch_size == self.num_samples
|
||||
return iter(self.batches)
|
||||
|
||||
def _bisect(self, x, lo=0, hi=None):
|
||||
if hi is None:
|
||||
hi = len(self.boundaries) - 1
|
||||
|
||||
if hi > lo:
|
||||
mid = (hi + lo) // 2
|
||||
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
||||
return mid
|
||||
elif x <= self.boundaries[mid]:
|
||||
return self._bisect(x, lo, mid)
|
||||
else:
|
||||
return self._bisect(x, mid + 1, hi)
|
||||
else:
|
||||
return -1
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples // self.batch_size
|
@ -1,58 +0,0 @@
|
||||
import torch
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
rl = rl.float().detach()
|
||||
gl = gl.float()
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
dr = dr.float()
|
||||
dg = dg.float()
|
||||
r_loss = torch.mean((1 - dr) ** 2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
dg = dg.float()
|
||||
l = torch.mean((1 - dg) ** 2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
||||
"""
|
||||
z_p, logs_q: [b, h, t_t]
|
||||
m_p, logs_p: [b, h, t_t]
|
||||
"""
|
||||
z_p = z_p.float()
|
||||
logs_q = logs_q.float()
|
||||
m_p = m_p.float()
|
||||
logs_p = logs_p.float()
|
||||
z_mask = z_mask.float()
|
||||
|
||||
kl = logs_p - logs_q - 0.5
|
||||
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
||||
kl = torch.sum(kl * z_mask)
|
||||
l = kl / torch.sum(z_mask)
|
||||
return l
|
@ -1,127 +0,0 @@
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor
|
||||
"""
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor used to compress
|
||||
"""
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
return dynamic_range_compression_torch(magnitudes)
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
return dynamic_range_decompression_torch(magnitudes)
|
||||
|
||||
|
||||
# Reusable banks
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
||||
|
||||
Args:
|
||||
y :: (B, T) - Audio waveforms
|
||||
n_fft
|
||||
sampling_rate
|
||||
hop_size
|
||||
win_size
|
||||
center
|
||||
Returns:
|
||||
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
||||
"""
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
# Padding
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=True,
|
||||
)
|
||||
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
||||
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
# MelBasis - Cache if needed
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=spec.dtype, device=spec.device
|
||||
)
|
||||
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
||||
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
melspec = spectral_normalize_torch(melspec)
|
||||
return melspec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(
|
||||
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
||||
):
|
||||
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
||||
|
||||
Args:
|
||||
y :: (B, T) - Waveforms
|
||||
Returns:
|
||||
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
||||
"""
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
||||
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
||||
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
||||
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
|
||||
return melspec
|
@ -1,261 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from collections import OrderedDict
|
||||
|
||||
import torch
|
||||
|
||||
from i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
|
||||
def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
opt["config"] = [
|
||||
hps.data.filter_length // 2 + 1,
|
||||
32,
|
||||
hps.model.inter_channels,
|
||||
hps.model.hidden_channels,
|
||||
hps.model.filter_channels,
|
||||
hps.model.n_heads,
|
||||
hps.model.n_layers,
|
||||
hps.model.kernel_size,
|
||||
hps.model.p_dropout,
|
||||
hps.model.resblock,
|
||||
hps.model.resblock_kernel_sizes,
|
||||
hps.model.resblock_dilation_sizes,
|
||||
hps.model.upsample_rates,
|
||||
hps.model.upsample_initial_channel,
|
||||
hps.model.upsample_kernel_sizes,
|
||||
hps.model.spk_embed_dim,
|
||||
hps.model.gin_channels,
|
||||
hps.data.sampling_rate,
|
||||
]
|
||||
opt["info"] = "%sepoch" % epoch
|
||||
opt["sr"] = sr
|
||||
opt["f0"] = if_f0
|
||||
opt["version"] = version
|
||||
torch.save(opt, "assets/weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
def show_info(path):
|
||||
try:
|
||||
a = torch.load(path, map_location="cpu")
|
||||
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s\n版本:%s" % (
|
||||
a.get("info", "None"),
|
||||
a.get("sr", "None"),
|
||||
a.get("f0", "None"),
|
||||
a.get("version", "None"),
|
||||
)
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
def extract_small_model(path, name, sr, if_f0, info, version):
|
||||
try:
|
||||
ckpt = torch.load(path, map_location="cpu")
|
||||
if "model" in ckpt:
|
||||
ckpt = ckpt["model"]
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
if sr == "40k":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 10, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4],
|
||||
109,
|
||||
256,
|
||||
40000,
|
||||
]
|
||||
elif sr == "48k":
|
||||
if version == "v1":
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 6, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
48000,
|
||||
]
|
||||
else:
|
||||
opt["config"] = [
|
||||
1025,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[12, 10, 2, 2],
|
||||
512,
|
||||
[24, 20, 4, 4],
|
||||
109,
|
||||
256,
|
||||
48000,
|
||||
]
|
||||
elif sr == "32k":
|
||||
if version == "v1":
|
||||
opt["config"] = [
|
||||
513,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 4, 2, 2, 2],
|
||||
512,
|
||||
[16, 16, 4, 4, 4],
|
||||
109,
|
||||
256,
|
||||
32000,
|
||||
]
|
||||
else:
|
||||
opt["config"] = [
|
||||
513,
|
||||
32,
|
||||
192,
|
||||
192,
|
||||
768,
|
||||
2,
|
||||
6,
|
||||
3,
|
||||
0,
|
||||
"1",
|
||||
[3, 7, 11],
|
||||
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
||||
[10, 8, 2, 2],
|
||||
512,
|
||||
[20, 16, 4, 4],
|
||||
109,
|
||||
256,
|
||||
32000,
|
||||
]
|
||||
if info == "":
|
||||
info = "Extracted model."
|
||||
opt["info"] = info
|
||||
opt["version"] = version
|
||||
opt["sr"] = sr
|
||||
opt["f0"] = int(if_f0)
|
||||
torch.save(opt, "assets/weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
def change_info(path, info, name):
|
||||
try:
|
||||
ckpt = torch.load(path, map_location="cpu")
|
||||
ckpt["info"] = info
|
||||
if name == "":
|
||||
name = os.path.basename(path)
|
||||
torch.save(ckpt, "assets/weights/%s" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
||||
try:
|
||||
|
||||
def extract(ckpt):
|
||||
a = ckpt["model"]
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in a.keys():
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = a[key]
|
||||
return opt
|
||||
|
||||
ckpt1 = torch.load(path1, map_location="cpu")
|
||||
ckpt2 = torch.load(path2, map_location="cpu")
|
||||
cfg = ckpt1["config"]
|
||||
if "model" in ckpt1:
|
||||
ckpt1 = extract(ckpt1)
|
||||
else:
|
||||
ckpt1 = ckpt1["weight"]
|
||||
if "model" in ckpt2:
|
||||
ckpt2 = extract(ckpt2)
|
||||
else:
|
||||
ckpt2 = ckpt2["weight"]
|
||||
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
|
||||
return "Fail to merge the models. The model architectures are not the same."
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt1.keys():
|
||||
# try:
|
||||
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
|
||||
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
|
||||
opt["weight"][key] = (
|
||||
alpha1 * (ckpt1[key][:min_shape0].float())
|
||||
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
|
||||
).half()
|
||||
else:
|
||||
opt["weight"][key] = (
|
||||
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
|
||||
).half()
|
||||
# except:
|
||||
# pdb.set_trace()
|
||||
opt["config"] = cfg
|
||||
"""
|
||||
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
|
||||
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
|
||||
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
||||
"""
|
||||
opt["sr"] = sr
|
||||
opt["f0"] = 1 if f0 == i18n("是") else 0
|
||||
opt["version"] = version
|
||||
opt["info"] = info
|
||||
torch.save(opt, "assets/weights/%s.pth" % name)
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
@ -1,483 +0,0 @@
|
||||
import argparse
|
||||
import glob
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from scipy.io.wavfile import read
|
||||
|
||||
MATPLOTLIB_FLAG = False
|
||||
|
||||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||||
logger = logging
|
||||
|
||||
|
||||
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
##################
|
||||
def go(model, bkey):
|
||||
saved_state_dict = checkpoint_dict[bkey]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
logger.warning(
|
||||
"shape-%s-mismatch. need: %s, get: %s",
|
||||
k,
|
||||
state_dict[k].shape,
|
||||
saved_state_dict[k].shape,
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
return model
|
||||
|
||||
go(combd, "combd")
|
||||
model = go(sbd, "sbd")
|
||||
#############
|
||||
logger.info("Loaded model weights")
|
||||
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None and load_opt == 1
|
||||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
||||
# assert os.path.isfile(checkpoint_path)
|
||||
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||
# iteration = checkpoint_dict['iteration']
|
||||
# learning_rate = checkpoint_dict['learning_rate']
|
||||
# if optimizer is not None:
|
||||
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||
# # print(1111)
|
||||
# saved_state_dict = checkpoint_dict['model']
|
||||
# # print(1111)
|
||||
#
|
||||
# if hasattr(model, 'module'):
|
||||
# state_dict = model.module.state_dict()
|
||||
# else:
|
||||
# state_dict = model.state_dict()
|
||||
# new_state_dict= {}
|
||||
# for k, v in state_dict.items():
|
||||
# try:
|
||||
# new_state_dict[k] = saved_state_dict[k]
|
||||
# except:
|
||||
# logger.info("%s is not in the checkpoint" % k)
|
||||
# new_state_dict[k] = v
|
||||
# if hasattr(model, 'module'):
|
||||
# model.module.load_state_dict(new_state_dict)
|
||||
# else:
|
||||
# model.load_state_dict(new_state_dict)
|
||||
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
||||
# checkpoint_path, iteration))
|
||||
# return model, optimizer, learning_rate, iteration
|
||||
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||||
assert os.path.isfile(checkpoint_path)
|
||||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
|
||||
saved_state_dict = checkpoint_dict["model"]
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
new_state_dict = {}
|
||||
for k, v in state_dict.items(): # 模型需要的shape
|
||||
try:
|
||||
new_state_dict[k] = saved_state_dict[k]
|
||||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||||
logger.warning(
|
||||
"shape-%s-mismatch|need-%s|get-%s",
|
||||
k,
|
||||
state_dict[k].shape,
|
||||
saved_state_dict[k].shape,
|
||||
) #
|
||||
raise KeyError
|
||||
except:
|
||||
# logger.info(traceback.format_exc())
|
||||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||||
new_state_dict[k] = v # 模型自带的随机值
|
||||
if hasattr(model, "module"):
|
||||
model.module.load_state_dict(new_state_dict, strict=False)
|
||||
else:
|
||||
model.load_state_dict(new_state_dict, strict=False)
|
||||
logger.info("Loaded model weights")
|
||||
|
||||
iteration = checkpoint_dict["iteration"]
|
||||
learning_rate = checkpoint_dict["learning_rate"]
|
||||
if (
|
||||
optimizer is not None and load_opt == 1
|
||||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||||
# try:
|
||||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||||
# except:
|
||||
# traceback.print_exc()
|
||||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||||
return model, optimizer, learning_rate, iteration
|
||||
|
||||
|
||||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(model, "module"):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"model": state_dict,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
||||
logger.info(
|
||||
"Saving model and optimizer state at epoch {} to {}".format(
|
||||
iteration, checkpoint_path
|
||||
)
|
||||
)
|
||||
if hasattr(combd, "module"):
|
||||
state_dict_combd = combd.module.state_dict()
|
||||
else:
|
||||
state_dict_combd = combd.state_dict()
|
||||
if hasattr(sbd, "module"):
|
||||
state_dict_sbd = sbd.module.state_dict()
|
||||
else:
|
||||
state_dict_sbd = sbd.state_dict()
|
||||
torch.save(
|
||||
{
|
||||
"combd": state_dict_combd,
|
||||
"sbd": state_dict_sbd,
|
||||
"iteration": iteration,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
"learning_rate": learning_rate,
|
||||
},
|
||||
checkpoint_path,
|
||||
)
|
||||
|
||||
|
||||
def summarize(
|
||||
writer,
|
||||
global_step,
|
||||
scalars={},
|
||||
histograms={},
|
||||
images={},
|
||||
audios={},
|
||||
audio_sampling_rate=22050,
|
||||
):
|
||||
for k, v in scalars.items():
|
||||
writer.add_scalar(k, v, global_step)
|
||||
for k, v in histograms.items():
|
||||
writer.add_histogram(k, v, global_step)
|
||||
for k, v in images.items():
|
||||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||||
for k, v in audios.items():
|
||||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||
|
||||
|
||||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||
x = f_list[-1]
|
||||
logger.debug(x)
|
||||
return x
|
||||
|
||||
|
||||
def plot_spectrogram_to_numpy(spectrogram):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||||
plt.colorbar(im, ax=ax)
|
||||
plt.xlabel("Frames")
|
||||
plt.ylabel("Channels")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def plot_alignment_to_numpy(alignment, info=None):
|
||||
global MATPLOTLIB_FLAG
|
||||
if not MATPLOTLIB_FLAG:
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
MATPLOTLIB_FLAG = True
|
||||
mpl_logger = logging.getLogger("matplotlib")
|
||||
mpl_logger.setLevel(logging.WARNING)
|
||||
import matplotlib.pylab as plt
|
||||
import numpy as np
|
||||
|
||||
fig, ax = plt.subplots(figsize=(6, 4))
|
||||
im = ax.imshow(
|
||||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||||
)
|
||||
fig.colorbar(im, ax=ax)
|
||||
xlabel = "Decoder timestep"
|
||||
if info is not None:
|
||||
xlabel += "\n\n" + info
|
||||
plt.xlabel(xlabel)
|
||||
plt.ylabel("Encoder timestep")
|
||||
plt.tight_layout()
|
||||
|
||||
fig.canvas.draw()
|
||||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||||
plt.close()
|
||||
return data
|
||||
|
||||
|
||||
def load_wav_to_torch(full_path):
|
||||
sampling_rate, data = read(full_path)
|
||||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||||
|
||||
|
||||
def load_filepaths_and_text(filename, split="|"):
|
||||
try:
|
||||
with open(filename, encoding="utf-8") as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
except UnicodeDecodeError:
|
||||
with open(filename) as f:
|
||||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||||
|
||||
return filepaths_and_text
|
||||
|
||||
|
||||
def get_hparams(init=True):
|
||||
"""
|
||||
todo:
|
||||
结尾七人组:
|
||||
保存频率、总epoch done
|
||||
bs done
|
||||
pretrainG、pretrainD done
|
||||
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
||||
if_latest done
|
||||
模型:if_f0 done
|
||||
采样率:自动选择config done
|
||||
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
||||
|
||||
-m:
|
||||
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
||||
-c不要了
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-se",
|
||||
"--save_every_epoch",
|
||||
type=int,
|
||||
required=True,
|
||||
help="checkpoint save frequency (epoch)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-pg", "--pretrainG", type=str, default="", help="Pretrained Generator path"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-pd", "--pretrainD", type=str, default="", help="Pretrained Discriminator path"
|
||||
)
|
||||
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
||||
parser.add_argument(
|
||||
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
||||
) # -m
|
||||
parser.add_argument(
|
||||
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-sw",
|
||||
"--save_every_weights",
|
||||
type=str,
|
||||
default="0",
|
||||
help="save the extracted model in weights directory when saving checkpoints",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-v", "--version", type=str, required=True, help="model version"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-f0",
|
||||
"--if_f0",
|
||||
type=int,
|
||||
required=True,
|
||||
help="use f0 as one of the inputs of the model, 1 or 0",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--if_latest",
|
||||
type=int,
|
||||
required=True,
|
||||
help="if only save the latest G/D pth file, 1 or 0",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--if_cache_data_in_gpu",
|
||||
type=int,
|
||||
required=True,
|
||||
help="if caching the dataset in GPU memory, 1 or 0",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
name = args.experiment_dir
|
||||
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
||||
|
||||
config_save_path = os.path.join(experiment_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
config = json.load(f)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
||||
hparams.save_every_epoch = args.save_every_epoch
|
||||
hparams.name = name
|
||||
hparams.total_epoch = args.total_epoch
|
||||
hparams.pretrainG = args.pretrainG
|
||||
hparams.pretrainD = args.pretrainD
|
||||
hparams.version = args.version
|
||||
hparams.gpus = args.gpus
|
||||
hparams.train.batch_size = args.batch_size
|
||||
hparams.sample_rate = args.sample_rate
|
||||
hparams.if_f0 = args.if_f0
|
||||
hparams.if_latest = args.if_latest
|
||||
hparams.save_every_weights = args.save_every_weights
|
||||
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
||||
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_dir(model_dir):
|
||||
config_save_path = os.path.join(model_dir, "config.json")
|
||||
with open(config_save_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
hparams.model_dir = model_dir
|
||||
return hparams
|
||||
|
||||
|
||||
def get_hparams_from_file(config_path):
|
||||
with open(config_path, "r") as f:
|
||||
data = f.read()
|
||||
config = json.loads(data)
|
||||
|
||||
hparams = HParams(**config)
|
||||
return hparams
|
||||
|
||||
|
||||
def check_git_hash(model_dir):
|
||||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||||
logger.warning(
|
||||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||||
source_dir
|
||||
)
|
||||
)
|
||||
return
|
||||
|
||||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||||
|
||||
path = os.path.join(model_dir, "githash")
|
||||
if os.path.exists(path):
|
||||
saved_hash = open(path).read()
|
||||
if saved_hash != cur_hash:
|
||||
logger.warning(
|
||||
"git hash values are different. {}(saved) != {}(current)".format(
|
||||
saved_hash[:8], cur_hash[:8]
|
||||
)
|
||||
)
|
||||
else:
|
||||
open(path, "w").write(cur_hash)
|
||||
|
||||
|
||||
def get_logger(model_dir, filename="train.log"):
|
||||
global logger
|
||||
logger = logging.getLogger(os.path.basename(model_dir))
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||||
if not os.path.exists(model_dir):
|
||||
os.makedirs(model_dir)
|
||||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||||
h.setLevel(logging.DEBUG)
|
||||
h.setFormatter(formatter)
|
||||
logger.addHandler(h)
|
||||
return logger
|
||||
|
||||
|
||||
class HParams:
|
||||
def __init__(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if type(v) == dict:
|
||||
v = HParams(**v)
|
||||
self[k] = v
|
||||
|
||||
def keys(self):
|
||||
return self.__dict__.keys()
|
||||
|
||||
def items(self):
|
||||
return self.__dict__.items()
|
||||
|
||||
def values(self):
|
||||
return self.__dict__.values()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.__dict__)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
return setattr(self, key, value)
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.__dict__
|
||||
|
||||
def __repr__(self):
|
||||
return self.__dict__.__repr__()
|
@ -1,108 +0,0 @@
|
||||
import os
|
||||
import traceback
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
import ffmpeg
|
||||
import torch
|
||||
|
||||
from configs.config import Config
|
||||
from infer.modules.uvr5.mdxnet import MDXNetDereverb
|
||||
from infer.modules.uvr5.vr import AudioPre, AudioPreDeEcho
|
||||
|
||||
config = Config()
|
||||
|
||||
|
||||
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
||||
infos = []
|
||||
try:
|
||||
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
save_root_vocal = (
|
||||
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
)
|
||||
save_root_ins = (
|
||||
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||||
)
|
||||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||||
pre_fun = MDXNetDereverb(15, config.device)
|
||||
else:
|
||||
func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
|
||||
pre_fun = func(
|
||||
agg=int(agg),
|
||||
model_path=os.path.join(
|
||||
os.getenv("weight_uvr5_root"), model_name + ".pth"
|
||||
),
|
||||
device=config.device,
|
||||
is_half=config.is_half,
|
||||
)
|
||||
is_hp3 = "HP3" in model_name
|
||||
if inp_root != "":
|
||||
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
||||
else:
|
||||
paths = [path.name for path in paths]
|
||||
for path in paths:
|
||||
inp_path = os.path.join(inp_root, path)
|
||||
need_reformat = 1
|
||||
done = 0
|
||||
try:
|
||||
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
||||
if (
|
||||
info["streams"][0]["channels"] == 2
|
||||
and info["streams"][0]["sample_rate"] == "44100"
|
||||
):
|
||||
need_reformat = 0
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0, is_hp3=is_hp3
|
||||
)
|
||||
done = 1
|
||||
except:
|
||||
need_reformat = 1
|
||||
traceback.print_exc()
|
||||
if need_reformat == 1:
|
||||
tmp_path = "%s/%s.reformatted.wav" % (
|
||||
os.path.join(os.environ["TEMP"]),
|
||||
os.path.basename(inp_path),
|
||||
)
|
||||
os.system(
|
||||
'ffmpeg -i "%s" -vn -acodec pcm_s16le -ac 2 -ar 44100 "%s" -y'
|
||||
% (inp_path, tmp_path)
|
||||
)
|
||||
inp_path = tmp_path
|
||||
try:
|
||||
if done == 0:
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0
|
||||
)
|
||||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
try:
|
||||
if done == 0:
|
||||
pre_fun._path_audio_(
|
||||
inp_path, save_root_ins, save_root_vocal, format0
|
||||
)
|
||||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(
|
||||
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
||||
)
|
||||
yield "\n".join(infos)
|
||||
except:
|
||||
infos.append(traceback.format_exc())
|
||||
yield "\n".join(infos)
|
||||
finally:
|
||||
try:
|
||||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||||
del pre_fun.pred.model
|
||||
del pre_fun.pred.model_
|
||||
else:
|
||||
del pre_fun.model
|
||||
del pre_fun
|
||||
except:
|
||||
traceback.print_exc()
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
logger.info("Executed torch.cuda.empty_cache()")
|
||||
yield "\n".join(infos)
|
Loading…
x
Reference in New Issue
Block a user