optimize real-time vc

This commit is contained in:
yxlllc 2023-12-26 16:26:01 +08:00
parent d62e80fb83
commit d7fb651f7c
3 changed files with 58 additions and 57 deletions

View File

@ -681,14 +681,6 @@ if __name__ == "__main__":
device=self.config.device, device=self.config.device,
dtype=torch.float32, dtype=torch.float32,
) )
self.pitch: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc,
dtype="int32",
)
self.pitchf: np.ndarray = np.zeros(
self.input_wav.shape[0] // self.zc,
dtype="float64",
)
self.sola_buffer: torch.Tensor = torch.zeros( self.sola_buffer: torch.Tensor = torch.zeros(
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
) )
@ -698,6 +690,7 @@ if __name__ == "__main__":
2 * self.zc, device=self.config.device, dtype=torch.float32 2 * self.zc, device=self.config.device, dtype=torch.float32
) )
self.skip_head = self.extra_frame // self.zc self.skip_head = self.extra_frame // self.zc
self.return_length = (self.block_frame + self.sola_buffer_frame + self.sola_search_frame) // self.zc
self.fade_in_window: torch.Tensor = ( self.fade_in_window: torch.Tensor = (
torch.sin( torch.sin(
0.5 0.5
@ -808,8 +801,7 @@ if __name__ == "__main__":
self.input_wav_res, self.input_wav_res,
self.block_frame_16k, self.block_frame_16k,
self.skip_head, self.skip_head,
self.pitch, self.return_length,
self.pitchf,
self.gui_config.f0method, self.gui_config.f0method,
) )
if self.resampler2 is not None: if self.resampler2 is not None:
@ -879,9 +871,7 @@ if __name__ == "__main__":
else: else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
printt("sola_offset = %d", int(sola_offset)) printt("sola_offset = %d", int(sola_offset))
infer_wav = infer_wav[ infer_wav = infer_wav[sola_offset :]
sola_offset : sola_offset + self.block_frame + self.crossfade_frame
]
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv: if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv:
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window
@ -894,11 +884,11 @@ if __name__ == "__main__":
self.sola_buffer[:] = infer_wav[self.block_frame : self.block_frame + self.sola_buffer_frame] self.sola_buffer[:] = infer_wav[self.block_frame : self.block_frame + self.sola_buffer_frame]
if sys.platform == "darwin": if sys.platform == "darwin":
outdata[:] = ( outdata[:] = (
infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis] infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis]
) )
else: else:
outdata[:] = ( outdata[:] = (
infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy() infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy()
) )
total_time = time.perf_counter() - start_time total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000)) self.window["infer_time"].update(int(total_time * 1000))

View File

@ -785,16 +785,19 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
nsff0: torch.Tensor, nsff0: torch.Tensor,
sid: torch.Tensor, sid: torch.Tensor,
skip_head: Optional[torch.Tensor] = None, skip_head: Optional[torch.Tensor] = None,
return_length: Optional[torch.Tensor] = None,
): ):
g = self.emb_g(sid).unsqueeze(-1) g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if skip_head is not None: if skip_head is not None and return_length is not None:
assert isinstance(skip_head, torch.Tensor) assert isinstance(skip_head, torch.Tensor)
assert isinstance(return_length, torch.Tensor)
head = int(skip_head.item()) head = int(skip_head.item())
z_p = z_p[:, :, head:] length = int(return_length.item())
x_mask = x_mask[:, :, head:] z_p = z_p[:, :, head: head + length]
nsff0 = nsff0[:, head:] x_mask = x_mask[:, :, head: head + length]
nsff0 = nsff0[:, head: head + length]
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g) o = self.dec(z * x_mask, nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)
@ -944,16 +947,19 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
nsff0: torch.Tensor, nsff0: torch.Tensor,
sid: torch.Tensor, sid: torch.Tensor,
skip_head: Optional[torch.Tensor] = None, skip_head: Optional[torch.Tensor] = None,
return_length: Optional[torch.Tensor] = None,
): ):
g = self.emb_g(sid).unsqueeze(-1) g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if skip_head is not None: if skip_head is not None and return_length is not None:
assert isinstance(skip_head, torch.Tensor) assert isinstance(skip_head, torch.Tensor)
assert isinstance(return_length, torch.Tensor)
head = int(skip_head.item()) head = int(skip_head.item())
z_p = z_p[:, :, head:] length = int(return_length.item())
x_mask = x_mask[:, :, head:] z_p = z_p[:, :, head: head + length]
nsff0 = nsff0[:, head:] x_mask = x_mask[:, :, head: head + length]
nsff0 = nsff0[:, head: head + length]
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, nsff0, g=g) o = self.dec(z * x_mask, nsff0, g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)
@ -1092,15 +1098,18 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
phone_lengths: torch.Tensor, phone_lengths: torch.Tensor,
sid: torch.Tensor, sid: torch.Tensor,
skip_head: Optional[torch.Tensor] = None, skip_head: Optional[torch.Tensor] = None,
return_length: Optional[torch.Tensor] = None,
): ):
g = self.emb_g(sid).unsqueeze(-1) g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if skip_head is not None: if skip_head is not None and return_length is not None:
assert isinstance(skip_head, torch.Tensor) assert isinstance(skip_head, torch.Tensor)
assert isinstance(return_length, torch.Tensor)
head = int(skip_head.item()) head = int(skip_head.item())
z_p = z_p[:, :, head:] length = int(return_length.item())
x_mask = x_mask[:, :, head:] z_p = z_p[:, :, head: head + length]
x_mask = x_mask[:, :, head: head + length]
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g) o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)
@ -1239,15 +1248,18 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
phone_lengths: torch.Tensor, phone_lengths: torch.Tensor,
sid: torch.Tensor, sid: torch.Tensor,
skip_head: Optional[torch.Tensor] = None, skip_head: Optional[torch.Tensor] = None,
return_length: Optional[torch.Tensor] = None,
): ):
g = self.emb_g(sid).unsqueeze(-1) g = self.emb_g(sid).unsqueeze(-1)
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
if skip_head is not None: if skip_head is not None and return_length is not None:
assert isinstance(skip_head, torch.Tensor) assert isinstance(skip_head, torch.Tensor)
assert isinstance(return_length, torch.Tensor)
head = int(skip_head.item()) head = int(skip_head.item())
z_p = z_p[:, :, head:] length = int(return_length.item())
x_mask = x_mask[:, :, head:] z_p = z_p[:, :, head: head + length]
x_mask = x_mask[:, :, head: head + length]
z = self.flow(z_p, x_mask, g=g, reverse=True) z = self.flow(z_p, x_mask, g=g, reverse=True)
o = self.dec(z * x_mask, g=g) o = self.dec(z * x_mask, g=g)
return o, x_mask, (z, z_p, m_p, logs_p) return o, x_mask, (z, z_p, m_p, logs_p)

View File

@ -90,7 +90,9 @@ class RVC:
self.pth_path: str = pth_path self.pth_path: str = pth_path
self.index_path = index_path self.index_path = index_path
self.index_rate = index_rate self.index_rate = index_rate
self.cache_pitch: np.ndarray = np.zeros(1024, dtype="int32")
self.cache_pitchf = np.zeros(1024, dtype="float32")
if last_rvc is None: if last_rvc is None:
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
["assets/hubert/hubert_base.pt"], ["assets/hubert/hubert_base.pt"],
@ -329,8 +331,9 @@ class RVC:
sr=16000, sr=16000,
decoder_mode='local_argmax', decoder_mode='local_argmax',
threshold=0.006, threshold=0.006,
).squeeze().cpu().numpy() )
f0 *= pow(2, f0_up_key / 12) f0 *= pow(2, f0_up_key / 12)
f0 = f0.squeeze().cpu().numpy()
return self.get_f0_post(f0) return self.get_f0_post(f0)
def infer( def infer(
@ -338,8 +341,7 @@ class RVC:
input_wav: torch.Tensor, input_wav: torch.Tensor,
block_frame_16k, block_frame_16k,
skip_head, skip_head,
cache_pitch, return_length,
cache_pitchf,
f0method, f0method,
) -> np.ndarray: ) -> np.ndarray:
t1 = ttime() t1 = ttime()
@ -362,24 +364,22 @@ class RVC:
t2 = ttime() t2 = ttime()
try: try:
if hasattr(self, "index") and self.index_rate != 0: if hasattr(self, "index") and self.index_rate != 0:
leng_replace_head = int(rate * feats[0].shape[0]) npy = feats[0][skip_head // 2:].cpu().numpy().astype("float32")
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
score, ix = self.index.search(npy, k=8) score, ix = self.index.search(npy, k=8)
weight = np.square(1 / score) weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True) weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.config.is_half: if self.config.is_half:
npy = npy.astype("float16") npy = npy.astype("float16")
feats[0][-leng_replace_head:] = ( feats[0][skip_head // 2:] = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
+ (1 - self.index_rate) * feats[0][-leng_replace_head:] + (1 - self.index_rate) * feats[0][skip_head // 2:]
) )
else: else:
printt("Index search FAILED or disabled") printt("Index search FAILED or disabled")
except: except:
traceback.print_exc() traceback.print_exc()
printt("Index search FAILED") printt("Index search FAILED")
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t3 = ttime() t3 = ttime()
if self.if_f0 == 1: if self.if_f0 == 1:
f0_extractor_frame = block_frame_16k + 800 f0_extractor_frame = block_frame_16k + 800
@ -387,40 +387,39 @@ class RVC:
f0_extractor_frame = ( f0_extractor_frame = (
5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
) )
input_wav = input_wav[-f0_extractor_frame:] pitch, pitchf = self.get_f0(input_wav[-f0_extractor_frame: ], self.f0_up_key, self.n_cpu, f0method)
pitch, pitchf = self.get_f0(input_wav, self.f0_up_key, self.n_cpu, f0method)
start_frame = block_frame_16k // 160 start_frame = block_frame_16k // 160
end_frame = len(cache_pitch) - (pitch.shape[0] - 4) + start_frame end_frame = len(self.cache_pitch) - (pitch.shape[0] - 4) + start_frame
cache_pitch[:] = np.append(cache_pitch[start_frame:end_frame], pitch[3:-1]) self.cache_pitch[:] = np.append(self.cache_pitch[start_frame: end_frame], pitch[3:-1])
cache_pitchf[:] = np.append( self.cache_pitchf[:] = np.append(
cache_pitchf[start_frame:end_frame], pitchf[3:-1] self.cache_pitchf[start_frame: end_frame], pitchf[3:-1]
) )
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
else:
cache_pitch, cache_pitchf = None, None
p_len = min(feats.shape[1], 13000)
t4 = ttime() t4 = ttime()
feats = feats[:, :p_len, :] p_len = input_wav.shape[0] // 160
if self.if_f0 == 1: if self.if_f0 == 1:
cache_pitch = torch.LongTensor(cache_pitch[:p_len]).to(self.device).unsqueeze(0) cache_pitch = torch.LongTensor(self.cache_pitch[-p_len: ]).to(self.device).unsqueeze(0)
cache_pitchf = torch.FloatTensor(cache_pitchf[:p_len]).to(self.device).unsqueeze(0) cache_pitchf = torch.FloatTensor(self.cache_pitchf[-p_len: ]).to(self.device).unsqueeze(0)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
feats = feats[:, :p_len, :]
p_len = torch.LongTensor([p_len]).to(self.device) p_len = torch.LongTensor([p_len]).to(self.device)
sid = torch.LongTensor([0]).to(self.device) sid = torch.LongTensor([0]).to(self.device)
skip_head = torch.LongTensor([skip_head]) skip_head = torch.LongTensor([skip_head])
return_length = torch.LongTensor([return_length])
with torch.no_grad(): with torch.no_grad():
if self.if_f0 == 1: if self.if_f0 == 1:
infered_audio = self.net_g.infer( infered_audio, _, _ = self.net_g.infer(
feats, feats,
p_len, p_len,
cache_pitch, cache_pitch,
cache_pitchf, cache_pitchf,
sid, sid,
skip_head, skip_head,
)[0][0, 0].data.float() return_length,
)
else: else:
infered_audio = self.net_g.infer( infered_audio, _, _ = self.net_g.infer(
feats, p_len, sid, skip_head feats, p_len, sid, skip_head, return_length
)[0][0, 0].data.float() )
t5 = ttime() t5 = ttime()
printt( printt(
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs", "Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
@ -429,4 +428,4 @@ class RVC:
t4 - t3, t4 - t3,
t5 - t4, t5 - t4,
) )
return infered_audio return infered_audio.squeeze().float()