mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-19 21:00:11 +08:00
Apply Code Formatter Change
This commit is contained in:
parent
055864cc90
commit
de0c1399c8
@ -1,14 +1,23 @@
|
|||||||
import torch, numpy as np,pdb
|
import torch, numpy as np, pdb
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torch,pdb
|
import torch, pdb
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from scipy.signal import get_window
|
from scipy.signal import get_window
|
||||||
from librosa.util import pad_center, tiny,normalize
|
from librosa.util import pad_center, tiny, normalize
|
||||||
|
|
||||||
|
|
||||||
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
||||||
def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
|
def window_sumsquare(
|
||||||
n_fft=800, dtype=np.float32, norm=None):
|
window,
|
||||||
|
n_frames,
|
||||||
|
hop_length=200,
|
||||||
|
win_length=800,
|
||||||
|
n_fft=800,
|
||||||
|
dtype=np.float32,
|
||||||
|
norm=None,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
# from librosa 0.6
|
# from librosa 0.6
|
||||||
Compute the sum-square envelope of a window function at a given hop length.
|
Compute the sum-square envelope of a window function at a given hop length.
|
||||||
@ -41,18 +50,20 @@ def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
|
|||||||
|
|
||||||
# Compute the squared window at the desired length
|
# Compute the squared window at the desired length
|
||||||
win_sq = get_window(window, win_length, fftbins=True)
|
win_sq = get_window(window, win_length, fftbins=True)
|
||||||
win_sq = normalize(win_sq, norm=norm)**2
|
win_sq = normalize(win_sq, norm=norm) ** 2
|
||||||
win_sq = pad_center(win_sq, n_fft)
|
win_sq = pad_center(win_sq, n_fft)
|
||||||
|
|
||||||
# Fill the envelope
|
# Fill the envelope
|
||||||
for i in range(n_frames):
|
for i in range(n_frames):
|
||||||
sample = i * hop_length
|
sample = i * hop_length
|
||||||
x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
|
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class STFT(torch.nn.Module):
|
class STFT(torch.nn.Module):
|
||||||
def __init__(self, filter_length=1024, hop_length=512, win_length=None,
|
def __init__(
|
||||||
window='hann'):
|
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
||||||
This is a bit tricky so there are some cases that probably won't work as working
|
This is a bit tricky so there are some cases that probably won't work as working
|
||||||
@ -79,12 +90,15 @@ class STFT(torch.nn.Module):
|
|||||||
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
||||||
|
|
||||||
cutoff = int((self.filter_length / 2 + 1))
|
cutoff = int((self.filter_length / 2 + 1))
|
||||||
fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),np.imag(fourier_basis[:cutoff, :])])
|
fourier_basis = np.vstack(
|
||||||
|
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
||||||
|
)
|
||||||
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
||||||
inverse_basis = torch.FloatTensor(
|
inverse_basis = torch.FloatTensor(
|
||||||
np.linalg.pinv(scale * fourier_basis).T[:, None, :])
|
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
||||||
|
)
|
||||||
|
|
||||||
assert (filter_length >= self.win_length)
|
assert filter_length >= self.win_length
|
||||||
# get window and zero center pad it to filter_length
|
# get window and zero center pad it to filter_length
|
||||||
fft_window = get_window(window, self.win_length, fftbins=True)
|
fft_window = get_window(window, self.win_length, fftbins=True)
|
||||||
fft_window = pad_center(fft_window, size=filter_length)
|
fft_window = pad_center(fft_window, size=filter_length)
|
||||||
@ -94,8 +108,8 @@ class STFT(torch.nn.Module):
|
|||||||
forward_basis *= fft_window
|
forward_basis *= fft_window
|
||||||
inverse_basis *= fft_window
|
inverse_basis *= fft_window
|
||||||
|
|
||||||
self.register_buffer('forward_basis', forward_basis.float())
|
self.register_buffer("forward_basis", forward_basis.float())
|
||||||
self.register_buffer('inverse_basis', inverse_basis.float())
|
self.register_buffer("inverse_basis", inverse_basis.float())
|
||||||
|
|
||||||
def transform(self, input_data):
|
def transform(self, input_data):
|
||||||
"""Take input data (audio) to STFT domain.
|
"""Take input data (audio) to STFT domain.
|
||||||
@ -117,23 +131,25 @@ class STFT(torch.nn.Module):
|
|||||||
# similar to librosa, reflect-pad the input
|
# similar to librosa, reflect-pad the input
|
||||||
input_data = input_data.view(num_batches, 1, num_samples)
|
input_data = input_data.view(num_batches, 1, num_samples)
|
||||||
# print(1234,input_data.shape)
|
# print(1234,input_data.shape)
|
||||||
input_data = F.pad(input_data.unsqueeze(1),(self.pad_amount, self.pad_amount, 0, 0,0,0),mode='reflect').squeeze(1)
|
input_data = F.pad(
|
||||||
|
input_data.unsqueeze(1),
|
||||||
|
(self.pad_amount, self.pad_amount, 0, 0, 0, 0),
|
||||||
|
mode="reflect",
|
||||||
|
).squeeze(1)
|
||||||
# print(2333,input_data.shape,self.forward_basis.shape,self.hop_length)
|
# print(2333,input_data.shape,self.forward_basis.shape,self.hop_length)
|
||||||
# pdb.set_trace()
|
# pdb.set_trace()
|
||||||
forward_transform = F.conv1d(
|
forward_transform = F.conv1d(
|
||||||
input_data,
|
input_data, self.forward_basis, stride=self.hop_length, padding=0
|
||||||
self.forward_basis,
|
)
|
||||||
stride=self.hop_length,
|
|
||||||
padding=0)
|
|
||||||
|
|
||||||
cutoff = int((self.filter_length / 2) + 1)
|
cutoff = int((self.filter_length / 2) + 1)
|
||||||
real_part = forward_transform[:, :cutoff, :]
|
real_part = forward_transform[:, :cutoff, :]
|
||||||
imag_part = forward_transform[:, cutoff:, :]
|
imag_part = forward_transform[:, cutoff:, :]
|
||||||
|
|
||||||
magnitude = torch.sqrt(real_part ** 2 + imag_part ** 2)
|
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
||||||
# phase = torch.atan2(imag_part.data, real_part.data)
|
# phase = torch.atan2(imag_part.data, real_part.data)
|
||||||
|
|
||||||
return magnitude#, phase
|
return magnitude # , phase
|
||||||
|
|
||||||
def inverse(self, magnitude, phase):
|
def inverse(self, magnitude, phase):
|
||||||
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
||||||
@ -150,30 +166,39 @@ class STFT(torch.nn.Module):
|
|||||||
shape (num_batch, num_samples)
|
shape (num_batch, num_samples)
|
||||||
"""
|
"""
|
||||||
recombine_magnitude_phase = torch.cat(
|
recombine_magnitude_phase = torch.cat(
|
||||||
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1)
|
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
||||||
|
)
|
||||||
|
|
||||||
inverse_transform = F.conv_transpose1d(
|
inverse_transform = F.conv_transpose1d(
|
||||||
recombine_magnitude_phase,
|
recombine_magnitude_phase,
|
||||||
self.inverse_basis,
|
self.inverse_basis,
|
||||||
stride=self.hop_length,
|
stride=self.hop_length,
|
||||||
padding=0)
|
padding=0,
|
||||||
|
)
|
||||||
|
|
||||||
if self.window is not None:
|
if self.window is not None:
|
||||||
window_sum = window_sumsquare(
|
window_sum = window_sumsquare(
|
||||||
self.window, magnitude.size(-1), hop_length=self.hop_length,
|
self.window,
|
||||||
win_length=self.win_length, n_fft=self.filter_length,
|
magnitude.size(-1),
|
||||||
dtype=np.float32)
|
hop_length=self.hop_length,
|
||||||
|
win_length=self.win_length,
|
||||||
|
n_fft=self.filter_length,
|
||||||
|
dtype=np.float32,
|
||||||
|
)
|
||||||
# remove modulation effects
|
# remove modulation effects
|
||||||
approx_nonzero_indices = torch.from_numpy(
|
approx_nonzero_indices = torch.from_numpy(
|
||||||
np.where(window_sum > tiny(window_sum))[0])
|
np.where(window_sum > tiny(window_sum))[0]
|
||||||
|
)
|
||||||
window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
|
window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
|
||||||
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
|
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
||||||
|
approx_nonzero_indices
|
||||||
|
]
|
||||||
|
|
||||||
# scale by hop ratio
|
# scale by hop ratio
|
||||||
inverse_transform *= float(self.filter_length) / self.hop_length
|
inverse_transform *= float(self.filter_length) / self.hop_length
|
||||||
|
|
||||||
inverse_transform = inverse_transform[..., self.pad_amount:]
|
inverse_transform = inverse_transform[..., self.pad_amount :]
|
||||||
inverse_transform = inverse_transform[..., :self.num_samples]
|
inverse_transform = inverse_transform[..., : self.num_samples]
|
||||||
inverse_transform = inverse_transform.squeeze(1)
|
inverse_transform = inverse_transform.squeeze(1)
|
||||||
|
|
||||||
return inverse_transform
|
return inverse_transform
|
||||||
@ -191,7 +216,11 @@ class STFT(torch.nn.Module):
|
|||||||
self.magnitude, self.phase = self.transform(input_data)
|
self.magnitude, self.phase = self.transform(input_data)
|
||||||
reconstruction = self.inverse(self.magnitude, self.phase)
|
reconstruction = self.inverse(self.magnitude, self.phase)
|
||||||
return reconstruction
|
return reconstruction
|
||||||
|
|
||||||
|
|
||||||
from time import time as ttime
|
from time import time as ttime
|
||||||
|
|
||||||
|
|
||||||
class BiGRU(nn.Module):
|
class BiGRU(nn.Module):
|
||||||
def __init__(self, input_features, hidden_features, num_layers):
|
def __init__(self, input_features, hidden_features, num_layers):
|
||||||
super(BiGRU, self).__init__()
|
super(BiGRU, self).__init__()
|
||||||
@ -510,13 +539,13 @@ class MelSpectrogram(torch.nn.Module):
|
|||||||
# print(222222222222222,audio.device,self.is_half)
|
# print(222222222222222,audio.device,self.is_half)
|
||||||
if hasattr(self, "stft") == False:
|
if hasattr(self, "stft") == False:
|
||||||
# print(n_fft_new,hop_length_new,win_length_new,audio.shape)
|
# print(n_fft_new,hop_length_new,win_length_new,audio.shape)
|
||||||
self.stft=STFT(
|
self.stft = STFT(
|
||||||
filter_length=n_fft_new,
|
filter_length=n_fft_new,
|
||||||
hop_length=hop_length_new,
|
hop_length=hop_length_new,
|
||||||
win_length=win_length_new,
|
win_length=win_length_new,
|
||||||
window='hann'
|
window="hann",
|
||||||
).to(audio.device)
|
).to(audio.device)
|
||||||
magnitude = self.stft.transform(audio)#phase
|
magnitude = self.stft.transform(audio) # phase
|
||||||
# if (audio.device.type == "privateuseone"):
|
# if (audio.device.type == "privateuseone"):
|
||||||
# magnitude=magnitude.to(audio.device)
|
# magnitude=magnitude.to(audio.device)
|
||||||
if keyshift != 0:
|
if keyshift != 0:
|
||||||
@ -544,10 +573,13 @@ class RMVPE:
|
|||||||
self.mel_extractor = MelSpectrogram(
|
self.mel_extractor = MelSpectrogram(
|
||||||
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
||||||
).to(device)
|
).to(device)
|
||||||
if ("privateuseone" in str(device)):
|
if "privateuseone" in str(device):
|
||||||
import onnxruntime as ort
|
import onnxruntime as ort
|
||||||
ort_session = ort.InferenceSession("rmvpe.onnx", providers=["DmlExecutionProvider"])
|
|
||||||
self.model=ort_session
|
ort_session = ort.InferenceSession(
|
||||||
|
"rmvpe.onnx", providers=["DmlExecutionProvider"]
|
||||||
|
)
|
||||||
|
self.model = ort_session
|
||||||
else:
|
else:
|
||||||
model = E2E(4, 1, (2, 2))
|
model = E2E(4, 1, (2, 2))
|
||||||
ckpt = torch.load(model_path, map_location="cpu")
|
ckpt = torch.load(model_path, map_location="cpu")
|
||||||
@ -566,10 +598,13 @@ class RMVPE:
|
|||||||
mel = F.pad(
|
mel = F.pad(
|
||||||
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
|
||||||
)
|
)
|
||||||
if("privateuseone" in str(self.device) ):
|
if "privateuseone" in str(self.device):
|
||||||
onnx_input_name = self.model.get_inputs()[0].name
|
onnx_input_name = self.model.get_inputs()[0].name
|
||||||
onnx_outputs_names = self.model.get_outputs()[0].name
|
onnx_outputs_names = self.model.get_outputs()[0].name
|
||||||
hidden = self.model.run([onnx_outputs_names], input_feed={onnx_input_name: mel.cpu().numpy()})[0]
|
hidden = self.model.run(
|
||||||
|
[onnx_outputs_names],
|
||||||
|
input_feed={onnx_input_name: mel.cpu().numpy()},
|
||||||
|
)[0]
|
||||||
else:
|
else:
|
||||||
hidden = self.model(mel)
|
hidden = self.model(mel)
|
||||||
return hidden[:, :n_frames]
|
return hidden[:, :n_frames]
|
||||||
@ -583,25 +618,27 @@ class RMVPE:
|
|||||||
|
|
||||||
def infer_from_audio(self, audio, thred=0.03):
|
def infer_from_audio(self, audio, thred=0.03):
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
t0=ttime()
|
t0 = ttime()
|
||||||
mel = self.mel_extractor(torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True)
|
mel = self.mel_extractor(
|
||||||
|
torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
|
||||||
|
)
|
||||||
# print(123123123,mel.device.type)
|
# print(123123123,mel.device.type)
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
t1=ttime()
|
t1 = ttime()
|
||||||
hidden = self.mel2hidden(mel)
|
hidden = self.mel2hidden(mel)
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
t2=ttime()
|
t2 = ttime()
|
||||||
# print(234234,hidden.device.type)
|
# print(234234,hidden.device.type)
|
||||||
if("privateuseone" not in str(self.device)):
|
if "privateuseone" not in str(self.device):
|
||||||
hidden = hidden.squeeze(0).cpu().numpy()
|
hidden = hidden.squeeze(0).cpu().numpy()
|
||||||
else:
|
else:
|
||||||
hidden=hidden[0]
|
hidden = hidden[0]
|
||||||
if self.is_half == True:
|
if self.is_half == True:
|
||||||
hidden = hidden.astype("float32")
|
hidden = hidden.astype("float32")
|
||||||
|
|
||||||
f0 = self.decode(hidden, thred=thred)
|
f0 = self.decode(hidden, thred=thred)
|
||||||
# torch.cuda.synchronize()
|
# torch.cuda.synchronize()
|
||||||
t3=ttime()
|
t3 = ttime()
|
||||||
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
||||||
return f0
|
return f0
|
||||||
|
|
||||||
@ -632,8 +669,9 @@ class RMVPE:
|
|||||||
return devided
|
return devided
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
import soundfile as sf, librosa
|
import soundfile as sf, librosa
|
||||||
|
|
||||||
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
|
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
|
||||||
if len(audio.shape) > 1:
|
if len(audio.shape) > 1:
|
||||||
audio = librosa.to_mono(audio.transpose(1, 0))
|
audio = librosa.to_mono(audio.transpose(1, 0))
|
||||||
@ -642,13 +680,13 @@ if __name__ == '__main__':
|
|||||||
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
||||||
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
|
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
|
||||||
thred = 0.03 # 0.01
|
thred = 0.03 # 0.01
|
||||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
rmvpe = RMVPE(model_path,is_half=False, device=device)
|
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
||||||
t0=ttime()
|
t0 = ttime()
|
||||||
f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
||||||
t1=ttime()
|
t1 = ttime()
|
||||||
print(f0.shape,t1-t0)
|
print(f0.shape, t1 - t0)
|
||||||
|
@ -31,4 +31,3 @@ def load_hubert(config):
|
|||||||
else:
|
else:
|
||||||
hubert_model = hubert_model.float()
|
hubert_model = hubert_model.float()
|
||||||
return hubert_model.eval()
|
return hubert_model.eval()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user