mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 12:35:04 +08:00
Faiss Tutorial for Developers (#97)
* add faiss tutorial (WIP) * add embedding tips
This commit is contained in:
parent
f6ef9bca0c
commit
fdf12a4add
146
docs/faiss_tips_en.md
Normal file
146
docs/faiss_tips_en.md
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
faiss tuning TIPS
|
||||||
|
==================
|
||||||
|
# about faiss
|
||||||
|
faiss is a library of neighborhood searches for dense vectors, developed by facebook research, which efficiently implements many approximate neighborhood search methods.
|
||||||
|
Approximate Neighbor Search finds similar vectors quickly while sacrificing some accuracy.
|
||||||
|
|
||||||
|
## faiss in RVC
|
||||||
|
In RVC, for the embedding of features converted by HuBERT, we search for embeddings similar to the embedding generated from the training data and mix them to achieve a conversion that is closer to the original speech. However, since this search takes time if performed naively, high-speed conversion is realized by using approximate neighborhood search.
|
||||||
|
|
||||||
|
# implementation overview
|
||||||
|
In '/logs/your-experiment/3_feature256' where the model is located, features extracted by HuBERT from each voice data are located.
|
||||||
|
From here we read the npy files in order sorted by filename and concatenate the vectors to create big_npy. (This vector has shape [N, 256].)
|
||||||
|
After saving big_npy as /logs/your-experiment/total_fea.npy, train it with faiss.
|
||||||
|
|
||||||
|
As of 2023/04/18, IVF based on L2 distance is used using the index factory function of faiss.
|
||||||
|
The number of IVF divisions (n_ivf) is N//39, and n_probe uses int(np.power(n_ivf, 0.3)). (Look around train_index in infer-web.py.)
|
||||||
|
|
||||||
|
In this article, I will first explain the meaning of these parameters, and then write advice for developers to create a better index.
|
||||||
|
|
||||||
|
# Explanation of the method
|
||||||
|
## index factory
|
||||||
|
An index factory is a unique faiss notation that expresses a pipeline that connects multiple approximate neighborhood search methods as a string.
|
||||||
|
This allows you to try various approximate neighborhood search methods simply by changing the index factory string.
|
||||||
|
In RVC it is used like this:
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
||||||
|
```
|
||||||
|
Among the arguments of index_factory, the first is the number of dimensions of the vector, the second is the index factory string, and the third is the distance to use.
|
||||||
|
|
||||||
|
For more detailed notation
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/The-index-factory
|
||||||
|
|
||||||
|
## index for distance
|
||||||
|
There are two typical indexes used as similarity of embedding as follows.
|
||||||
|
|
||||||
|
- Euclidean distance (METRIC_L2)
|
||||||
|
- inner product (METRIC_INNER_PRODUCT)
|
||||||
|
|
||||||
|
Euclidean distance takes the squared difference in each dimension, sums the differences in all dimensions, and then takes the square root. This is the same as the distance in 2D and 3D that we use on a daily basis.
|
||||||
|
The inner product is not used as an index of similarity as it is, and the cosine similarity that takes the inner product after being normalized by the L2 norm is generally used.
|
||||||
|
|
||||||
|
Which is better depends on the case, but cosine similarity is often used in embedding obtained by word2vec and similar image retrieval models learned by ArcFace. If you want to do l2 normalization on vector X with numpy, you can do it with the following code with eps small enough to avoid 0 division.
|
||||||
|
|
||||||
|
```python
|
||||||
|
X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
|
||||||
|
```
|
||||||
|
|
||||||
|
Also, for the index factory, you can change the distance index used for calculation by choosing the value to pass as the third argument.
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
|
||||||
|
```
|
||||||
|
|
||||||
|
## IVF
|
||||||
|
IVF (Inverted file indexes) is an algorithm similar to the inverted index in full-text search.
|
||||||
|
During learning, the search target is clustered with kmeans, and Voronoi partitioning is performed using the cluster center. Each data point is assigned a cluster, so we create a dictionary that looks up the data points from the clusters.
|
||||||
|
|
||||||
|
For example, if clusters are assigned as follows
|
||||||
|
|index|Cluster|
|
||||||
|
|-----|-------|
|
||||||
|
|1|A|
|
||||||
|
|2|B|
|
||||||
|
|3|A|
|
||||||
|
|4|C|
|
||||||
|
|5|B|
|
||||||
|
|
||||||
|
The resulting inverted index looks like this:
|
||||||
|
|
||||||
|
|cluster|index|
|
||||||
|
|-------|-----|
|
||||||
|
|A|1, 3|
|
||||||
|
|B|2, 5|
|
||||||
|
|C|4|
|
||||||
|
|
||||||
|
When searching, we first search n_probe clusters from the clusters, and then calculate the distances for the data points belonging to each cluster.
|
||||||
|
|
||||||
|
# recommend parameter
|
||||||
|
There are official guidelines on how to choose an index, so I will explain accordingly.
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
|
||||||
|
|
||||||
|
For datasets below 1M, 4bit-PQ is the most efficient method available in faiss as of April 2023.
|
||||||
|
Combining this with IVF, narrowing down the candidates with 4bit-PQ, and finally recalculating the distance with an accurate index can be described by using the following index factory.
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Recommended parameters for IVF
|
||||||
|
Consider the case of too many IVFs. For example, if coarse quantization by IVF is performed for the number of data, this is the same as a naive exhaustive search and is inefficient.
|
||||||
|
For 1M or less, IVF values are recommended between 4*sqrt(N) ~ 16*sqrt(N) for N number of data points.
|
||||||
|
|
||||||
|
Since the calculation time increases in proportion to the number of n_probes, please consult with the accuracy and choose appropriately. Personally, I don't think RVC needs that much accuracy, so n_probe = 1 is fine.
|
||||||
|
|
||||||
|
## FastScan
|
||||||
|
FastScan is a method that enables high-speed approximation of distances by Cartesian product quantization by performing them in registers.
|
||||||
|
Cartesian product quantization performs clustering independently for each d dimension (usually d = 2) during learning, calculates the distance between clusters in advance, and creates a lookup table. At the time of prediction, the distance of each dimension can be calculated in O(1) by looking at the lookup table.
|
||||||
|
So the number you specify after PQ usually specifies half the dimension of the vector.
|
||||||
|
|
||||||
|
For a more detailed description of FastScan, please refer to the official documentation.
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
|
||||||
|
|
||||||
|
## RFlat
|
||||||
|
RFlat is an instruction to recalculate the rough distance calculated by FastScan with the exact distance specified by the third argument of index factory.
|
||||||
|
When getting k neighbors, k*k_factor points are recalculated.
|
||||||
|
|
||||||
|
# Techniques for embedding
|
||||||
|
## alpha query expansion
|
||||||
|
Query expansion is a technique used in searches, for example in full-text searches, where a few words are added to the entered search sentence to improve search accuracy. Several methods have also been proposed for vector search, among which α-query expansion is known as a highly effective method that does not require additional learning. In the paper, it is introduced in [Attention-Based Query Expansion Learning](https://arxiv.org/abs/2007.08019), etc., and [2nd place solution of kaggle shopee competition](https://www.kaggle.com/code/lyakaap/2nd-place-solution/notebook).
|
||||||
|
|
||||||
|
α-query expansion can be done by summing a vector with neighboring vectors with weights raised to the power of similarity. How to paste the code example. Replace big_npy with α query expansion.
|
||||||
|
|
||||||
|
```python
|
||||||
|
alpha = 3.
|
||||||
|
index = faiss.index_factory(256, "IVF512,PQ128x4fs,RFlat")
|
||||||
|
original_norm = np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
|
||||||
|
big_npy /= original_norm
|
||||||
|
index.train(big_npy)
|
||||||
|
index.add(big_npy)
|
||||||
|
dist, neighbor = index.search(big_npy, num_expand)
|
||||||
|
|
||||||
|
expand_arrays = []
|
||||||
|
ixs = np.arange(big_npy.shape[0])
|
||||||
|
for i in range(-(-big_npy.shape[0]//batch_size)):
|
||||||
|
ix = ixs[i*batch_size:(i+1)*batch_size]
|
||||||
|
weight = np.power(np.einsum("nd,nmd->nm", big_npy[ix], big_npy[neighbor[ix]]), alpha)
|
||||||
|
expand_arrays.append(np.sum(big_npy[neighbor[ix]] * np.expand_dims(weight, axis=2),axis=1))
|
||||||
|
big_npy = np.concatenate(expand_arrays, axis=0)
|
||||||
|
|
||||||
|
# normalize index version
|
||||||
|
big_npy = big_npy / np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
|
||||||
|
```
|
||||||
|
|
||||||
|
This is a technique that can be applied both to the query that does the search and to the DB being searched.
|
||||||
|
|
||||||
|
## Compress embedding with MiniBatch KMeans
|
||||||
|
If total_fea.npy is too large, it is possible to shrink the vector using KMeans.
|
||||||
|
Compression of embedding is possible with the following code. Specify the size you want to compress for n_clusters, and specify 256 * number of CPU cores for batch_size to fully benefit from CPU parallelization.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import multiprocessing
|
||||||
|
from sklearn.cluster import MiniBatchKMeans
|
||||||
|
kmeans = MiniBatchKMeans(n_clusters=10000, batch_size=256 * multiprocessing.cpu_count(), init="random")
|
||||||
|
kmeans.fit(big_npy)
|
||||||
|
sample_npy = kmeans.cluster_centers_
|
||||||
|
```
|
146
docs/faiss_tips_ja.md
Normal file
146
docs/faiss_tips_ja.md
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
faiss tuning TIPS
|
||||||
|
==================
|
||||||
|
# about faiss
|
||||||
|
faissはfacebook researchの開発する、密なベクトルに対する近傍探索をまとめたライブラリで、多くの近似近傍探索の手法を効率的に実装しています。
|
||||||
|
近似近傍探索はある程度精度を犠牲にしながら高速に類似するベクトルを探します。
|
||||||
|
|
||||||
|
## faiss in RVC
|
||||||
|
RVCではHuBERTで変換した特徴量のEmbeddingに対し、学習データから生成されたEmbeddingと類似するものを検索し、混ぜることでより元の音声に近い変換を実現しています。ただ、この検索は愚直に行うと時間がかかるため、近似近傍探索を用いることで高速な変換を実現しています。
|
||||||
|
|
||||||
|
# 実装のoverview
|
||||||
|
モデルが配置されている '/logs/your-experiment/3_feature256'には各音声データからHuBERTで抽出された特徴量が配置されています。
|
||||||
|
ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成します。(このベクトルのshapeは[N, 256]です。)
|
||||||
|
big_npyを/logs/your-experiment/total_fea.npyとして保存した後、faissを学習させます。
|
||||||
|
|
||||||
|
2023/04/18時点ではfaissのindex factoryの機能を用いて、L2距離に基づくIVFを用いています。
|
||||||
|
IVFの分割数(n_ivf)はN//39で、n_probeはint(np.power(n_ivf, 0.3))が採用されています。(infer-web.pyのtrain_index周りを探してください。)
|
||||||
|
|
||||||
|
本Tipsではまずこれらのパラメータの意味を解説し、その後よりよいindexを作成するための開発者向けアドバイスを書きます。
|
||||||
|
|
||||||
|
# 手法の解説
|
||||||
|
## index factory
|
||||||
|
index factoryは複数の近似近傍探索の手法を繋げるパイプラインをstringで表記するfaiss独自の記法です。
|
||||||
|
これにより、index factoryの文字列を変更するだけで様々な近似近傍探索の手法を試せます。
|
||||||
|
RVCでは以下のように使われています。
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
||||||
|
```
|
||||||
|
index_factoryの引数のうち、1つ目はベクトルの次元数、2つ目はindex factoryの文字列で、3つ目には用いる距離を指定することができます。
|
||||||
|
|
||||||
|
より詳細な記法については
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/The-index-factory
|
||||||
|
|
||||||
|
## 距離指標
|
||||||
|
embeddingの類似度として用いられる代表的な指標として以下の二つがあります。
|
||||||
|
|
||||||
|
- ユークリッド距離(METRIC_L2)
|
||||||
|
- 内積(METRIC_INNER_PRODUCT)
|
||||||
|
|
||||||
|
ユークリッド距離では各次元において二乗の差をとり、全次元の差を足してから平方根をとります。これは日常的に用いる2次元、3次元での距離と同じです。
|
||||||
|
内積はこのままでは類似度の指標として用いず、一般的にはL2ノルムで正規化してから内積をとるコサイン類似度を用います。
|
||||||
|
|
||||||
|
どちらがよいかは場合によりますが、word2vec等で得られるembeddingやArcFace等で学習した類似画像検索のモデルではコサイン類似度が用いられることが多いです。ベクトルXに対してl2正規化をnumpyで行う場合は、0 divisionを避けるために十分に小さな値をepsとして以下のコードで可能です。
|
||||||
|
|
||||||
|
```python
|
||||||
|
X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
|
||||||
|
```
|
||||||
|
|
||||||
|
また、index factoryには第3引数に渡す値を選ぶことで計算に用いる距離指標を変更できます。
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
|
||||||
|
```
|
||||||
|
|
||||||
|
## IVF
|
||||||
|
IVF(Inverted file indexes)は全文検索における転置インデックスと似たようなアルゴリズムです。
|
||||||
|
学習時には検索対象に対してkmeansでクラスタリングを行い、クラスタ中心を用いてボロノイ分割を行います。各データ点には一つずつクラスタが割り当てられるので、クラスタからデータ点を逆引きする辞書を作成します。
|
||||||
|
|
||||||
|
例えば以下のようにクラスタが割り当てられた場合
|
||||||
|
|index|クラスタ|
|
||||||
|
|-----|-------|
|
||||||
|
|1|A|
|
||||||
|
|2|B|
|
||||||
|
|3|A|
|
||||||
|
|4|C|
|
||||||
|
|5|B|
|
||||||
|
|
||||||
|
作成される転置インデックスは以下のようになります。
|
||||||
|
|
||||||
|
|クラスタ|index|
|
||||||
|
|-------|-----|
|
||||||
|
|A|1, 3|
|
||||||
|
|B|2, 5|
|
||||||
|
|C|4|
|
||||||
|
|
||||||
|
検索時にはまずクラスタからn_probe個のクラスタを検索し、次にそれぞれのクラスタに属するデータ点について距離を計算します。
|
||||||
|
|
||||||
|
# 推奨されるパラメータ
|
||||||
|
indexの選び方については公式にガイドラインがあるので、それに準じて説明します。
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
|
||||||
|
|
||||||
|
1M以下のデータセットにおいては4bit-PQが2023年4月時点ではfaissで利用できる最も効率的な手法です。
|
||||||
|
これをIVFと組み合わせ、4bit-PQで候補を絞り、最後に正確な指標で距離を再計算するには以下のindex factoryを用いることで記載できます。
|
||||||
|
|
||||||
|
```python
|
||||||
|
index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
|
||||||
|
```
|
||||||
|
|
||||||
|
## IVFの推奨パラメータ
|
||||||
|
IVFの数が多すぎる場合、たとえばデータ数の数だけIVFによる粗量子化を行うと、これは愚直な全探索と同じになり効率が悪いです。
|
||||||
|
1M以下の場合ではIVFの値はデータ点の数Nに対して4*sqrt(N) ~ 16*sqrt(N)に推奨しています。
|
||||||
|
|
||||||
|
n_probeはn_probeの数に比例して計算時間が増えるので、精度と相談して適切に選んでください。個人的にはRVCにおいてそこまで精度は必要ないと思うのでn_probe = 1で良いと思います。
|
||||||
|
|
||||||
|
## FastScan
|
||||||
|
FastScanは直積量子化で大まかに距離を近似するのを、レジスタ内で行うことにより高速に行うようにした手法です。
|
||||||
|
直積量子化は学習時にd次元ごと(通常はd=2)に独立してクラスタリングを行い、クラスタ同士の距離を事前計算してlookup tableを作成します。予測時はlookup tableを見ることで各次元の距離をO(1)で計算できます。
|
||||||
|
そのため、PQの次に指定する数字は通常ベクトルの半分の次元を指定します。
|
||||||
|
|
||||||
|
FastScanに関するより詳細な説明は公式のドキュメントを参照してください。
|
||||||
|
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
|
||||||
|
|
||||||
|
## RFlat
|
||||||
|
RFlatはFastScanで計算した大まかな距離を、index factoryの第三引数で指定した正確な距離で再計算する指示です。
|
||||||
|
k個の近傍を取得する際は、k*k_factor個の点について再計算が行われます。
|
||||||
|
|
||||||
|
# Embeddingに関するテクニック
|
||||||
|
## alpha query expansion
|
||||||
|
クエリ拡張は検索で使われるテクニックで、例えば全文検索では入力された検索文に単語を幾つか追加することで検索精度を上げることがあります。ベクトル検索にもいくつか提唱されていて、その内追加の学習がいらず効果が高い手法としてα-query expansionが知られています。論文では[Attention-Based Query Expansion Learning](https://arxiv.org/abs/2007.08019)などで紹介されていて、[kaggleのshopeeコンペの2位の解法](https://www.kaggle.com/code/lyakaap/2nd-place-solution/notebook)にも用いられていました。
|
||||||
|
|
||||||
|
α-query expansionはあるベクトルに対し、近傍のベクトルを類似度のα乗した重みで足し合わせることでできます。いかにコードの例を張ります。big_npyをα query expansionしたものに置き換えます。
|
||||||
|
|
||||||
|
```python
|
||||||
|
alpha = 3.
|
||||||
|
index = faiss.index_factory(256, "IVF512,PQ128x4fs,RFlat")
|
||||||
|
original_norm = np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
|
||||||
|
big_npy /= original_norm
|
||||||
|
index.train(big_npy)
|
||||||
|
index.add(big_npy)
|
||||||
|
dist, neighbor = index.search(big_npy, num_expand)
|
||||||
|
|
||||||
|
expand_arrays = []
|
||||||
|
ixs = np.arange(big_npy.shape[0])
|
||||||
|
for i in range(-(-big_npy.shape[0]//batch_size)):
|
||||||
|
ix = ixs[i*batch_size:(i+1)*batch_size]
|
||||||
|
weight = np.power(np.einsum("nd,nmd->nm", big_npy[ix], big_npy[neighbor[ix]]), alpha)
|
||||||
|
expand_arrays.append(np.sum(big_npy[neighbor[ix]] * np.expand_dims(weight, axis=2),axis=1))
|
||||||
|
big_npy = np.concatenate(expand_arrays, axis=0)
|
||||||
|
|
||||||
|
# normalize index version
|
||||||
|
big_npy = big_npy / np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
|
||||||
|
```
|
||||||
|
|
||||||
|
これは、検索を行うクエリにも、検索対象のDBにも適応可能なテクニックです。
|
||||||
|
|
||||||
|
## MiniBatch KMeansによるembeddingの圧縮
|
||||||
|
total_fea.npyが大きすぎる場合、KMeansを用いてベクトルを小さくすることが可能です。
|
||||||
|
以下のコードで、embeddingの圧縮が可能です。n_clustersは圧縮したい大きさを指定し、batch_sizeは256 * CPUのコア数を指定することでCPUの並列化の恩恵を十分に得ることができます。
|
||||||
|
|
||||||
|
```python
|
||||||
|
import multiprocessing
|
||||||
|
from sklearn.cluster import MiniBatchKMeans
|
||||||
|
kmeans = MiniBatchKMeans(n_clusters=10000, batch_size=256 * multiprocessing.cpu_count(), init="random")
|
||||||
|
kmeans.fit(big_npy)
|
||||||
|
sample_npy = kmeans.cluster_centers_
|
||||||
|
```
|
Loading…
Reference in New Issue
Block a user