import os import logging import sys from dotenv import load_dotenv load_dotenv() os.environ["OMP_NUM_THREADS"] = "4" if sys.platform == "darwin": os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" now_dir = os.getcwd() sys.path.append(now_dir) import multiprocessing logger = logging.getLogger(__name__) class Harvest(multiprocessing.Process): def __init__(self, inp_q, opt_q): multiprocessing.Process.__init__(self) self.inp_q = inp_q self.opt_q = opt_q def run(self): import numpy as np import pyworld while 1: idx, x, res_f0, n_cpu, ts = self.inp_q.get() f0, t = pyworld.harvest( x.astype(np.double), fs=16000, f0_ceil=1100, f0_floor=50, frame_period=10, ) res_f0[idx] = f0 if len(res_f0.keys()) >= n_cpu: self.opt_q.put(ts) if __name__ == "__main__": import json import multiprocessing import re import threading import time import traceback from multiprocessing import Queue, cpu_count from queue import Empty import librosa from tools.torchgate import TorchGate import numpy as np import PySimpleGUI as sg import sounddevice as sd import torch import torch.nn.functional as F import torchaudio.transforms as tat import tools.rvc_for_realtime as rvc_for_realtime from i18n.i18n import I18nAuto i18n = I18nAuto() device = rvc_for_realtime.config.device # device = torch.device( # "cuda" # if torch.cuda.is_available() # else ("mps" if torch.backends.mps.is_available() else "cpu") # ) current_dir = os.getcwd() inp_q = Queue() opt_q = Queue() n_cpu = min(cpu_count(), 8) for _ in range(n_cpu): Harvest(inp_q, opt_q).start() class GUIConfig: def __init__(self) -> None: self.pth_path: str = "" self.index_path: str = "" self.pitch: int = 0 self.samplerate: int = 40000 self.block_time: float = 1.0 # s self.buffer_num: int = 1 self.threhold: int = -60 self.crossfade_time: float = 0.04 self.extra_time: float = 2.0 self.I_noise_reduce = False self.O_noise_reduce = False self.rms_mix_rate = 0.0 self.index_rate = 0.3 self.n_cpu = min(n_cpu, 6) self.f0method = "harvest" self.sg_input_device = "" self.sg_output_device = "" class GUI: def __init__(self) -> None: self.config = GUIConfig() self.flag_vc = False self.launcher() def load(self): input_devices, output_devices, _, _ = self.get_devices() try: with open("configs/config.json", "r") as j: data = json.load(j) data["pm"] = data["f0method"] == "pm" data["harvest"] = data["f0method"] == "harvest" data["crepe"] = data["f0method"] == "crepe" data["rmvpe"] = data["f0method"] == "rmvpe" except: with open("configs/config.json", "w") as j: data = { "pth_path": " ", "index_path": " ", "sg_input_device": input_devices[sd.default.device[0]], "sg_output_device": output_devices[sd.default.device[1]], "threhold": "-60", "pitch": "0", "index_rate": "0", "rms_mix_rate": "0", "block_time": "0.25", "crossfade_length": "0.04", "extra_time": "2", "f0method": "rmvpe", } data["pm"] = data["f0method"] == "pm" data["harvest"] = data["f0method"] == "harvest" data["crepe"] = data["f0method"] == "crepe" data["rmvpe"] = data["f0method"] == "rmvpe" return data def launcher(self): data = self.load() sg.theme("LightBlue3") input_devices, output_devices, _, _ = self.get_devices() layout = [ [ sg.Frame( title=i18n("加载模型"), layout=[ [ sg.Input( default_text=data.get("pth_path", ""), key="pth_path", ), sg.FileBrowse( i18n("选择.pth文件"), initial_folder=os.path.join( os.getcwd(), "assets/weights" ), file_types=((". pth"),), ), ], [ sg.Input( default_text=data.get("index_path", ""), key="index_path", ), sg.FileBrowse( i18n("选择.index文件"), initial_folder=os.path.join(os.getcwd(), "logs"), file_types=((". index"),), ), ], ], ) ], [ sg.Frame( layout=[ [ sg.Text(i18n("输入设备")), sg.Combo( input_devices, key="sg_input_device", default_value=data.get("sg_input_device", ""), ), ], [ sg.Text(i18n("输出设备")), sg.Combo( output_devices, key="sg_output_device", default_value=data.get("sg_output_device", ""), ), ], [sg.Button(i18n("重载设备列表"), key="reload_devices")], ], title=i18n("音频设备(请使用同种类驱动)"), ) ], [ sg.Frame( layout=[ [ sg.Text(i18n("响应阈值")), sg.Slider( range=(-60, 0), key="threhold", resolution=1, orientation="h", default_value=data.get("threhold", "-60"), enable_events=True, ), ], [ sg.Text(i18n("音调设置")), sg.Slider( range=(-24, 24), key="pitch", resolution=1, orientation="h", default_value=data.get("pitch", "0"), enable_events=True, ), ], [ sg.Text(i18n("Index Rate")), sg.Slider( range=(0.0, 1.0), key="index_rate", resolution=0.01, orientation="h", default_value=data.get("index_rate", "0"), enable_events=True, ), ], [ sg.Text(i18n("响度因子")), sg.Slider( range=(0.0, 1.0), key="rms_mix_rate", resolution=0.01, orientation="h", default_value=data.get("rms_mix_rate", "0"), enable_events=True, ), ], [ sg.Text(i18n("音高算法")), sg.Radio( "pm", "f0method", key="pm", default=data.get("pm", "") == True, enable_events=True, ), sg.Radio( "harvest", "f0method", key="harvest", default=data.get("harvest", "") == True, enable_events=True, ), sg.Radio( "crepe", "f0method", key="crepe", default=data.get("crepe", "") == True, enable_events=True, ), sg.Radio( "rmvpe", "f0method", key="rmvpe", default=data.get("rmvpe", "") == True, enable_events=True, ), ], ], title=i18n("常规设置"), ), sg.Frame( layout=[ [ sg.Text(i18n("采样长度")), sg.Slider( range=(0.05, 2.4), key="block_time", resolution=0.01, orientation="h", default_value=data.get("block_time", "0.25"), enable_events=True, ), ], [ sg.Text(i18n("harvest进程数")), sg.Slider( range=(1, n_cpu), key="n_cpu", resolution=1, orientation="h", default_value=data.get( "n_cpu", min(self.config.n_cpu, n_cpu) ), enable_events=True, ), ], [ sg.Text(i18n("淡入淡出长度")), sg.Slider( range=(0.01, 0.15), key="crossfade_length", resolution=0.01, orientation="h", default_value=data.get("crossfade_length", "0.04"), enable_events=True, ), ], [ sg.Text(i18n("额外推理时长")), sg.Slider( range=(0.05, 5.00), key="extra_time", resolution=0.01, orientation="h", default_value=data.get("extra_time", "2.0"), enable_events=True, ), ], [ sg.Checkbox( i18n("输入降噪"), key="I_noise_reduce", enable_events=True, ), sg.Checkbox( i18n("输出降噪"), key="O_noise_reduce", enable_events=True, ), ], ], title=i18n("性能设置"), ), ], [ sg.Button(i18n("开始音频转换"), key="start_vc"), sg.Button(i18n("停止音频转换"), key="stop_vc"), sg.Text(i18n("推理时间(ms):")), sg.Text("0", key="infer_time"), ], ] self.window = sg.Window("RVC - GUI", layout=layout, finalize=True) self.event_handler() def event_handler(self): while True: event, values = self.window.read() if event == sg.WINDOW_CLOSED: self.flag_vc = False exit() if event == "reload_devices": prev_input = self.window["sg_input_device"].get() prev_output = self.window["sg_output_device"].get() input_devices, output_devices, _, _ = self.get_devices(update=True) if prev_input not in input_devices: self.config.sg_input_device = input_devices[0] else: self.config.sg_input_device = prev_input self.window["sg_input_device"].Update(values=input_devices) self.window["sg_input_device"].Update( value=self.config.sg_input_device ) if prev_output not in output_devices: self.config.sg_output_device = output_devices[0] else: self.config.sg_output_device = prev_output self.window["sg_output_device"].Update(values=output_devices) self.window["sg_output_device"].Update( value=self.config.sg_output_device ) if event == "start_vc" and self.flag_vc == False: if self.set_values(values) == True: logger.info("cuda_is_available: %s", torch.cuda.is_available()) self.start_vc() settings = { "pth_path": values["pth_path"], "index_path": values["index_path"], "sg_input_device": values["sg_input_device"], "sg_output_device": values["sg_output_device"], "threhold": values["threhold"], "pitch": values["pitch"], "rms_mix_rate": values["rms_mix_rate"], "index_rate": values["index_rate"], "block_time": values["block_time"], "crossfade_length": values["crossfade_length"], "extra_time": values["extra_time"], "n_cpu": values["n_cpu"], "f0method": ["pm", "harvest", "crepe", "rmvpe"][ [ values["pm"], values["harvest"], values["crepe"], values["rmvpe"], ].index(True) ], } with open("configs/config.json", "w") as j: json.dump(settings, j) if event == "stop_vc" and self.flag_vc == True: self.flag_vc = False # Parameter hot update if event == "threhold": self.config.threhold = values["threhold"] elif event == "pitch": self.config.pitch = values["pitch"] if hasattr(self, "rvc"): self.rvc.change_key(values["pitch"]) elif event == "index_rate": self.config.index_rate = values["index_rate"] if hasattr(self, "rvc"): self.rvc.change_index_rate(values["index_rate"]) elif event == "rms_mix_rate": self.config.rms_mix_rate = values["rms_mix_rate"] elif event in ["pm", "harvest", "crepe", "rmvpe"]: self.config.f0method = event elif event == "I_noise_reduce": self.config.I_noise_reduce = values["I_noise_reduce"] elif event == "O_noise_reduce": self.config.O_noise_reduce = values["O_noise_reduce"] elif event != "start_vc" and self.flag_vc == True: # Other parameters do not support hot update self.flag_vc = False def set_values(self, values): if len(values["pth_path"].strip()) == 0: sg.popup(i18n("请选择pth文件")) return False if len(values["index_path"].strip()) == 0: sg.popup(i18n("请选择index文件")) return False pattern = re.compile("[^\x00-\x7F]+") if pattern.findall(values["pth_path"]): sg.popup(i18n("pth文件路径不可包含中文")) return False if pattern.findall(values["index_path"]): sg.popup(i18n("index文件路径不可包含中文")) return False self.set_devices(values["sg_input_device"], values["sg_output_device"]) self.config.pth_path = values["pth_path"] self.config.index_path = values["index_path"] self.config.threhold = values["threhold"] self.config.pitch = values["pitch"] self.config.block_time = values["block_time"] self.config.crossfade_time = values["crossfade_length"] self.config.extra_time = values["extra_time"] self.config.I_noise_reduce = values["I_noise_reduce"] self.config.O_noise_reduce = values["O_noise_reduce"] self.config.rms_mix_rate = values["rms_mix_rate"] self.config.index_rate = values["index_rate"] self.config.n_cpu = values["n_cpu"] self.config.f0method = ["pm", "harvest", "crepe", "rmvpe"][ [ values["pm"], values["harvest"], values["crepe"], values["rmvpe"], ].index(True) ] return True def start_vc(self): torch.cuda.empty_cache() self.flag_vc = True self.rvc = rvc_for_realtime.RVC( self.config.pitch, self.config.pth_path, self.config.index_path, self.config.index_rate, self.config.n_cpu, inp_q, opt_q, device, self.rvc if hasattr(self, "rvc") else None, ) self.config.samplerate = self.rvc.tgt_sr self.zc = self.rvc.tgt_sr // 100 self.block_frame = ( int(np.round(self.config.block_time * self.config.samplerate / self.zc)) * self.zc ) self.block_frame_16k = 160 * self.block_frame // self.zc self.crossfade_frame = ( int( np.round( self.config.crossfade_time * self.config.samplerate / self.zc ) ) * self.zc ) self.sola_search_frame = self.zc self.extra_frame = ( int(np.round(self.config.extra_time * self.config.samplerate / self.zc)) * self.zc ) self.input_wav: torch.Tensor = torch.zeros( self.extra_frame + self.crossfade_frame + self.sola_search_frame + self.block_frame, device=device, dtype=torch.float32, ) self.input_wav_res: torch.Tensor = torch.zeros( 160 * self.input_wav.shape[0] // self.zc, device=device, dtype=torch.float32, ) self.pitch: np.ndarray = np.zeros( self.input_wav.shape[0] // self.zc, dtype="int32", ) self.pitchf: np.ndarray = np.zeros( self.input_wav.shape[0] // self.zc, dtype="float64", ) self.sola_buffer: torch.Tensor = torch.zeros( self.crossfade_frame, device=device, dtype=torch.float32 ) self.nr_buffer: torch.Tensor = self.sola_buffer.clone() self.output_buffer: torch.Tensor = self.input_wav.clone() self.res_buffer: torch.Tensor = torch.zeros( 2 * self.zc, device=device, dtype=torch.float32 ) self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0] self.fade_in_window: torch.Tensor = ( torch.sin( 0.5 * np.pi * torch.linspace( 0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32, ) ) ** 2 ) self.fade_out_window: torch.Tensor = 1 - self.fade_in_window self.resampler = tat.Resample( orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32 ).to(device) self.tg = TorchGate( sr=self.config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 ).to(device) thread_vc = threading.Thread(target=self.soundinput) thread_vc.start() def soundinput(self): """ 接受音频输入 """ channels = 1 if sys.platform == "darwin" else 2 with sd.Stream( channels=channels, callback=self.audio_callback, blocksize=self.block_frame, samplerate=self.config.samplerate, dtype="float32", ): while self.flag_vc: time.sleep(self.config.block_time) logger.debug("Audio block passed.") logger.debug("ENDing VC") def audio_callback( self, indata: np.ndarray, outdata: np.ndarray, frames, times, status ): """ 音频处理 """ start_time = time.perf_counter() indata = librosa.to_mono(indata.T) if self.config.threhold > -60: rms = librosa.feature.rms( y=indata, frame_length=4 * self.zc, hop_length=self.zc ) db_threhold = ( librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold ) for i in range(db_threhold.shape[0]): if db_threhold[i]: indata[i * self.zc : (i + 1) * self.zc] = 0 self.input_wav[: -self.block_frame] = self.input_wav[ self.block_frame : ].clone() self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(device) self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[ self.block_frame_16k : ].clone() # input noise reduction and resampling if self.config.I_noise_reduce: input_wav = self.input_wav[ -self.crossfade_frame - self.block_frame - 2 * self.zc : ] input_wav = self.tg( input_wav.unsqueeze(0), self.input_wav.unsqueeze(0) )[0, 2 * self.zc :] input_wav[: self.crossfade_frame] *= self.fade_in_window input_wav[: self.crossfade_frame] += ( self.nr_buffer * self.fade_out_window ) self.nr_buffer[:] = input_wav[-self.crossfade_frame :] input_wav = torch.cat( (self.res_buffer[:], input_wav[: self.block_frame]) ) self.res_buffer[:] = input_wav[-2 * self.zc :] self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( input_wav )[160:] else: self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( self.input_wav[-self.block_frame - 2 * self.zc :] )[160:] # infer f0_extractor_frame = self.block_frame_16k + 800 if self.config.f0method == "rmvpe": f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) infer_wav = self.rvc.infer( self.input_wav_res, self.input_wav_res[-f0_extractor_frame:].cpu().numpy(), self.block_frame_16k, self.valid_rate, self.pitch, self.pitchf, self.config.f0method, ) infer_wav = infer_wav[ -self.crossfade_frame - self.sola_search_frame - self.block_frame : ] # output noise reduction if self.config.O_noise_reduce: self.output_buffer[: -self.block_frame] = self.output_buffer[ self.block_frame : ].clone() self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] infer_wav = self.tg( infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0) ).squeeze(0) # volume envelop mixing if self.config.rms_mix_rate < 1: rms1 = librosa.feature.rms( y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :] .cpu() .numpy(), frame_length=640, hop_length=160, ) rms1 = torch.from_numpy(rms1).to(device) rms1 = F.interpolate( rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True, )[0, 0, :-1] rms2 = librosa.feature.rms( y=infer_wav[:].cpu().numpy(), frame_length=4 * self.zc, hop_length=self.zc, ) rms2 = torch.from_numpy(rms2).to(device) rms2 = F.interpolate( rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True, )[0, 0, :-1] rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) infer_wav *= torch.pow( rms1 / rms2, torch.tensor(1 - self.config.rms_mix_rate) ) # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC conv_input = infer_wav[ None, None, : self.crossfade_frame + self.sola_search_frame ] cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) cor_den = torch.sqrt( F.conv1d( conv_input**2, torch.ones(1, 1, self.crossfade_frame, device=device), ) + 1e-8 ) if sys.platform == "darwin": _, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) sola_offset = sola_offset.item() else: sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) logger.debug("sola_offset = %d", int(sola_offset)) infer_wav = infer_wav[ sola_offset : sola_offset + self.block_frame + self.crossfade_frame ] infer_wav[: self.crossfade_frame] *= self.fade_in_window infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window self.sola_buffer[:] = infer_wav[-self.crossfade_frame :] if sys.platform == "darwin": outdata[:] = ( infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis] ) else: outdata[:] = ( infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy() ) total_time = time.perf_counter() - start_time self.window["infer_time"].update(int(total_time * 1000)) logger.info("Infer time: %.2f", total_time) def get_devices(self, update: bool = True): """获取设备列表""" if update: sd._terminate() sd._initialize() devices = sd.query_devices() hostapis = sd.query_hostapis() for hostapi in hostapis: for device_idx in hostapi["devices"]: devices[device_idx]["hostapi_name"] = hostapi["name"] input_devices = [ f"{d['name']} ({d['hostapi_name']})" for d in devices if d["max_input_channels"] > 0 ] output_devices = [ f"{d['name']} ({d['hostapi_name']})" for d in devices if d["max_output_channels"] > 0 ] input_devices_indices = [ d["index"] if "index" in d else d["name"] for d in devices if d["max_input_channels"] > 0 ] output_devices_indices = [ d["index"] if "index" in d else d["name"] for d in devices if d["max_output_channels"] > 0 ] return ( input_devices, output_devices, input_devices_indices, output_devices_indices, ) def set_devices(self, input_device, output_device): """设置输出设备""" ( input_devices, output_devices, input_device_indices, output_device_indices, ) = self.get_devices() sd.default.device[0] = input_device_indices[ input_devices.index(input_device) ] sd.default.device[1] = output_device_indices[ output_devices.index(output_device) ] logger.info("Input device: %s:%s", str(sd.default.device[0]), input_device) logger.info( "Output device: %s:%s", str(sd.default.device[1]), output_device ) gui = GUI()