import sys,os,multiprocessing now_dir=os.getcwd() sys.path.append(now_dir) inp_root = sys.argv[1] sr = int(sys.argv[2]) n_p = int(sys.argv[3]) exp_dir = sys.argv[4] noparallel = sys.argv[5] == "True" import numpy as np,os,traceback from slicer2 import Slicer import librosa,traceback from scipy.io import wavfile import multiprocessing from my_utils import load_audio mutex = multiprocessing.Lock() f = open("%s/preprocess.log"%exp_dir, "a+") def println(strr): mutex.acquire() print(strr) f.write("%s\n" % strr) f.flush() mutex.release() class PreProcess(): def __init__(self,sr,exp_dir): self.slicer = Slicer( sr=sr, threshold=-32, min_length=800, min_interval=400, hop_size=15, max_sil_kept=150 ) self.sr=sr self.per=3.7 self.overlap=0.3 self.tail=self.per+self.overlap self.max=0.95 self.alpha=0.8 self.exp_dir=exp_dir self.gt_wavs_dir="%s/0_gt_wavs"%exp_dir self.wavs16k_dir="%s/1_16k_wavs"%exp_dir os.makedirs(self.exp_dir,exist_ok=True) os.makedirs(self.gt_wavs_dir,exist_ok=True) os.makedirs(self.wavs16k_dir,exist_ok=True) def norm_write(self,tmp_audio,idx0,idx1): tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (1 - self.alpha) * tmp_audio wavfile.write("%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1), self.sr, (tmp_audio*32768).astype(np.int16)) tmp_audio = librosa.resample(tmp_audio, orig_sr=self.sr, target_sr=16000) wavfile.write("%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1), 16000, (tmp_audio*32768).astype(np.int16)) def pipeline(self,path, idx0): try: audio = load_audio(path,self.sr) idx1=0 for audio in self.slicer.slice(audio): i = 0 while (1): start = int(self.sr * (self.per - self.overlap) * i) i += 1 if (len(audio[start:]) > self.tail * self.sr): tmp_audio = audio[start:start + int(self.per * self.sr)] self.norm_write(tmp_audio,idx0,idx1) idx1 += 1 else: tmp_audio = audio[start:] break self.norm_write(tmp_audio, idx0, idx1) println("%s->Suc."%path) except: println("%s->%s"%(path,traceback.format_exc())) def pipeline_mp(self,infos): for path, idx0 in infos: self.pipeline(path,idx0) def pipeline_mp_inp_dir(self,inp_root,n_p): try: infos = [("%s/%s" % (inp_root, name), idx) for idx, name in enumerate(sorted(list(os.listdir(inp_root))))] if noparallel: for i in range(n_p): self.pipeline_mp(infos[i::n_p]) else: ps=[] for i in range(n_p): p=multiprocessing.Process(target=self.pipeline_mp,args=(infos[i::n_p],)) p.start() ps.append(p) for p in ps:p.join() except: println("Fail. %s"%traceback.format_exc()) def preprocess_trainset(inp_root, sr, n_p, exp_dir): pp=PreProcess(sr,exp_dir) println("start preprocess") println(sys.argv) pp.pipeline_mp_inp_dir(inp_root,n_p) println("end preprocess") if __name__=='__main__': preprocess_trainset(inp_root, sr, n_p, exp_dir)