import os,sys,traceback if len(sys.argv) == 4: n_part=int(sys.argv[1]) i_part=int(sys.argv[2]) exp_dir=sys.argv[3] else: n_part=int(sys.argv[1]) i_part=int(sys.argv[2]) i_gpu=sys.argv[3] exp_dir=sys.argv[4] os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) import torch import torch.nn.functional as F import soundfile as sf import numpy as np from fairseq import checkpoint_utils device = torch.device("cuda" if torch.cuda.is_available() else "cpu") f = open("%s/extract_f0_feature.log"%exp_dir, "a+") def printt(strr): print(strr) f.write("%s\n" % strr) f.flush() printt(sys.argv) # model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/speech/pretrain/ContentVec_legacy500.pt" model_path = "hubert_base.pt" printt(exp_dir) wavPath = "%s/1_16k_wavs"%exp_dir outPath = "%s/3_feature256"%exp_dir os.makedirs(outPath,exist_ok=True) # wave must be 16k, hop_size=320 def readwave(wav_path, normalize=False): wav, sr = sf.read(wav_path) assert sr == 16000 feats = torch.from_numpy(wav).float() if feats.dim() == 2: # double channels feats = feats.mean(-1) assert feats.dim() == 1, feats.dim() if normalize: with torch.no_grad(): feats = F.layer_norm(feats, feats.shape) feats = feats.view(1, -1) return feats # HuBERT model printt("load model(s) from {}".format(model_path)) models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( [model_path], suffix="", ) model = models[0] model = model.to(device) if torch.cuda.is_available(): model = model.half() model.eval() todo=sorted(list(os.listdir(wavPath)))[i_part::n_part] n = max(1,len(todo) // 10) # 最多打印十条 if(len(todo)==0):printt("no-feature-todo") else: printt("all-feature-%s"%len(todo)) for idx,file in enumerate(todo): try: if file.endswith(".wav"): wav_path = "%s/%s"%(wavPath,file) out_path = "%s/%s"%(outPath,file.replace("wav","npy")) if(os.path.exists(out_path)):continue feats = readwave(wav_path, normalize=saved_cfg.task.normalize) padding_mask = torch.BoolTensor(feats.shape).fill_(False) inputs = { "source": feats.half().to(device) if torch.cuda.is_available() else feats.to(device), "padding_mask": padding_mask.to(device), "output_layer": 9, # layer 9 } with torch.no_grad(): logits = model.extract_features(**inputs) feats = model.final_proj(logits[0]) feats = feats.squeeze(0).float().cpu().numpy() # feats = np.repeat(feats, 2,0) # 20ms -> 10ms np.save(out_path, feats, allow_pickle=False) if (idx % n == 0):printt("now-%s,all-%s,%s,%s"%(len(todo),idx,file,feats.shape)) except: printt(traceback.format_exc()) printt("all-feature-done")