# rvc_ui/initialization.py import os import sys from dotenv import load_dotenv import torch import fairseq import warnings import shutil import logging # Set current directory and load environment variables now_dir = os.getcwd() sys.path.append(now_dir) load_dotenv() # Configure logging and warnings logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("httpx").setLevel(logging.WARNING) logger = logging.getLogger(__name__) # Cleanup and create necessary directories tmp = os.path.join(now_dir, "TEMP") shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree(f"{now_dir}/runtime/Lib/site-packages/infer_pack", ignore_errors=True) shutil.rmtree(f"{now_dir}/runtime/Lib/site-packages/uvr5_pack", ignore_errors=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) # Import your configuration and voice conversion modules from configs.config import Config from infer.modules.vc.modules import VC # Instantiate configuration and VC config = Config() vc = VC(config) # Optionally override fairseq grad multiply if dml is enabled if config.dml: def forward_dml(ctx, x, scale): ctx.scale = scale return x.clone().detach() fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml # GPU detection and info collection ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if_gpu_ok = False if torch.cuda.is_available() or ngpu != 0: for i in range(ngpu): gpu_name = torch.cuda.get_device_name(i) if any( value in gpu_name.upper() for value in [ "10", "16", "20", "30", "40", "A2", "A3", "A4", "P4", "A50", "500", "A60", "70", "80", "90", "M4", "T4", "TITAN", "4060", "L", "6000", ] ): if_gpu_ok = True gpu_infos.append(f"{i}\t{gpu_name}") mem.append( int(torch.cuda.get_device_properties(i).total_memory / (1024**3) + 0.4) ) if if_gpu_ok and gpu_infos: gpu_info = "\n".join(gpu_infos) default_batch_size = min(mem) // 2 else: gpu_info = ( "Unfortunately, there is no compatible GPU available to support your training." ) default_batch_size = 1 gpus = "-".join([i[0] for i in gpu_infos]) # Expose useful variables for other modules __all__ = [ "now_dir", "config", "vc", "gpu_info", "default_batch_size", "gpus", "logger", ]