## Nvidia Triton Inference Serving Best Practice for Spark TTS ### Quick Start Directly launch the service using docker compose. ```sh docker compose up ``` ### Build Image Build the docker image from scratch. ```sh docker build . -f Dockerfile.server -t soar97/triton-spark-tts:25.02 ``` ### Create Docker Container ```sh your_mount_dir=/mnt:/mnt docker run -it --name "spark-tts-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-spark-tts:25.02 ``` ### Export Models to TensorRT-LLM and Launch Server Inside docker container, we would follow the official guide of TensorRT-LLM to build TensorRT-LLM engines. See [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/qwen). ```sh bash run.sh 0 3 ``` ### Simple HTTP client ```sh python3 client_http.py ``` ### Benchmark using Dataset ```sh num_task=2 python3 client_grpc.py --num-tasks $num_task --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts ``` ### Benchmark Results Decoding on a single L20 GPU, using 26 different prompt_audio/target_text pairs, total audio duration 169 secs. | Model | Note | Concurrency | Avg Latency | RTF | |-------|-----------|-----------------------|---------|--| | Spark-TTS-0.5B | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 1 | 876.24 ms | 0.1362| | Spark-TTS-0.5B | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 2 | 920.97 ms | 0.0737| | Spark-TTS-0.5B | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 4 | 1611.51 ms | 0.0704|