from multiprocessing import cpu_count
import threading
from time import sleep
from subprocess import Popen
from time import sleep
import torch, os, traceback, sys, warnings, shutil, numpy as np
import faiss
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
i18n = I18nAuto()
# 判断是否有能用来训练和加速推理的N卡
ncpu = cpu_count()
ngpu = torch.cuda.device_count()
gpu_infos = []
if (not torch.cuda.is_available()) or ngpu == 0:
if_gpu_ok = False
else:
if_gpu_ok = False
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if ("16" in gpu_name and "V100" not in gpu_name) or "MX" in gpu_name:
continue
if (
"10" in gpu_name
or "20" in gpu_name
or "30" in gpu_name
or "40" in gpu_name
or "A50" in gpu_name.upper()
or "70" in gpu_name
or "80" in gpu_name
or "90" in gpu_name
or "M4" in gpu_name
or "T4" in gpu_name
or "TITAN" in gpu_name.upper()
): # A10#A100#V100#A40#P40#M40#K80
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
gpu_info = (
"\n".join(gpu_infos)
if if_gpu_ok == True and len(gpu_infos) > 0
else "很遗憾您这没有能用的显卡来支持您训练"
)
gpus = "-".join([i[0] for i in gpu_infos])
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from scipy.io import wavfile
from fairseq import checkpoint_utils
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import (
is_half,
device,
python_cmd,
listen_port,
iscolab,
noparallel,
noautoopen,
)
from infer_uvr5 import _audio_pre_
from my_utils import load_audio
from train.process_ckpt import show_info, change_info, merge, extract_small_model
# from trainset_preprocess_pipeline import PreProcess
logging.getLogger("numba").setLevel(logging.WARNING)
class ToolButton(gr.Button, gr.components.FormComponent):
"""Small button with single emoji as text, fits inside gradio forms"""
def __init__(self, **kwargs):
super().__init__(variant="tool", **kwargs)
def get_block_name(self):
return "button"
hubert_model = None
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(device)
if is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
weight_root = "weights"
weight_uvr5_root = "uvr5_weights"
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
uvr5_names = []
for name in os.listdir(weight_uvr5_root):
if name.endswith(".pth"):
uvr5_names.append(name.replace(".pth", ""))
def vc_single(
sid,
input_audio,
f0_up_key,
f0_file,
f0_method,
file_index,
file_big_npy,
index_rate,
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model
if input_audio is None:
return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
try:
audio = load_audio(input_audio, 16000)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
times,
f0_up_key,
f0_method,
file_index,
file_big_npy,
index_rate,
if_f0,
f0_file=f0_file,
)
print(
"npy: ", times[0], "s, f0: ", times[1], "s, infer: ", times[2], "s", sep=""
)
return "Success", (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
def vc_multi(
sid,
dir_path,
opt_root,
paths,
f0_up_key,
f0_method,
file_index,
file_big_npy,
index_rate,
):
try:
dir_path = (
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
os.makedirs(opt_root, exist_ok=True)
try:
if dir_path != "":
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
else:
paths = [path.name for path in paths]
except:
traceback.print_exc()
paths = [path.name for path in paths]
infos = []
for path in paths:
info, opt = vc_single(
sid,
path,
f0_up_key,
None,
f0_method,
file_index,
file_big_npy,
index_rate,
)
if info == "Success":
try:
tgt_sr, audio_opt = opt
wavfile.write(
"%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt
)
except:
info = traceback.format_exc()
infos.append("%s->%s" % (os.path.basename(path), info))
yield "\n".join(infos)
yield "\n".join(infos)
except:
yield traceback.format_exc()
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins):
infos = []
try:
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
save_root_vocal = (
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
)
save_root_ins = (
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
)
pre_fun = _audio_pre_(
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
device=device,
is_half=is_half,
)
if inp_root != "":
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
else:
paths = [path.name for path in paths]
for name in paths:
inp_path = os.path.join(inp_root, name)
try:
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal)
infos.append("%s->Success" % (os.path.basename(inp_path)))
yield "\n".join(infos)
except:
infos.append(
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
)
yield "\n".join(infos)
except:
infos.append(traceback.format_exc())
yield "\n".join(infos)
finally:
try:
del pre_fun.model
del pre_fun
except:
traceback.print_exc()
print("clean_empty_cache")
if torch.cuda.is_available():
torch.cuda.empty_cache()
yield "\n".join(infos)
# 一个选项卡全局只能有一个音色
def get_vc(sid):
global n_spk, tgt_sr, net_g, vc, cpt
if sid == []:
global hubert_model
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt.get("f0", 1)
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid)
print("loading %s" % person)
cpt = torch.load(person, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
net_g.eval().to(device)
if is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, device, is_half)
n_spk = cpt["config"][-3]
return {"visible": True, "maximum": n_spk, "__type__": "update"}
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
return {"choices": sorted(names), "__type__": "update"}
def clean():
return {"value": "", "__type__": "update"}
def change_f0(if_f0_3, sr2): # np7, f0method8,pretrained_G14,pretrained_D15
if if_f0_3 == "是":
return (
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
"pretrained/f0G%s.pth" % sr2,
"pretrained/f0D%s.pth" % sr2,
)
return (
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
"pretrained/G%s.pth" % sr2,
"pretrained/D%s.pth" % sr2,
)
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while 1:
if p.poll() == None:
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() == None:
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p=ncpu):
sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
f.close()
cmd = (
python_cmd
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
% (trainset_dir, sr, n_p, now_dir, exp_dir)
+ str(noparallel)
)
print(cmd)
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir):
gpus = gpus.split("-")
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0 == "是":
cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
now_dir,
exp_dir,
n_p,
f0method,
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open(
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
) as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
####对不同part分别开多进程
"""
n_part=int(sys.argv[1])
i_part=int(sys.argv[2])
i_gpu=sys.argv[3]
exp_dir=sys.argv[4]
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
"""
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % (
device,
leng,
idx,
n_g,
now_dir,
exp_dir,
)
print(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi,
args=(
done,
ps,
),
).start()
while 1:
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
def change_sr2(sr2, if_f0_3):
if if_f0_3 == "是":
return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2
else:
return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
):
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
co256_dir = "%s/3_feature256" % (exp_dir)
if if_f0_3 == "是":
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(co256_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(co256_dir)]
)
opt = []
for name in names:
if if_f0_3 == "是":
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
co256_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
co256_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
if if_f0_3 == "是":
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
)
else:
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
% (now_dir, sr2, now_dir, spk_id5)
)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
print("write filelist done")
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
print("use gpus:", gpus16)
if gpus16:
cmd = (
python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 == "是" else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "是" else 0,
1 if if_cache_gpu17 == "是" else 0,
)
)
else:
cmd = (
python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 == "是" else 0,
batch_size12,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "是" else 0,
1 if if_cache_gpu17 == "是" else 0,
)
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1):
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = "%s/3_feature256" % (exp_dir)
if os.path.exists(feature_dir) == False:
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = big_npy.shape[0] // 39
infos = []
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
infos.append("adding")
yield "\n".join(infos)
index.add(big_npy)
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
infos.append("成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
gpus6,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
):
infos = []
def get_info_str(strr):
infos.append(strr)
return "\n".join(infos)
os.makedirs("%s/logs/%s" % (now_dir, exp_dir1), exist_ok=True)
#########step1:处理数据
open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "w").close()
cmd = (
python_cmd
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
% (trainset_dir4, sr_dict[sr2], ncpu, now_dir, exp_dir1)
+ str(noparallel)
)
yield get_info_str("step1:正在处理数据")
yield get_info_str(cmd)
p = Popen(cmd, shell=True)
p.wait()
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir1), "r") as f:
print(f.read())
#########step2a:提取音高
open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "w")
if if_f0_3 == "是":
yield get_info_str("step2a:正在提取音高")
cmd = python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
now_dir,
exp_dir1,
np7,
f0method8,
)
yield get_info_str(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
print(f.read())
else:
yield get_info_str("step2a:无需提取音高")
#######step2b:提取特征
yield get_info_str("step2b:正在提取特征")
gpus = gpus16.split("-")
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % (
device,
leng,
idx,
n_g,
now_dir,
exp_dir1,
)
yield get_info_str(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
for p in ps:
p.wait()
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir1), "r") as f:
print(f.read())
#######step3a:训练模型
yield get_info_str("step3a:正在训练模型")
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
co256_dir = "%s/3_feature256" % (exp_dir)
if if_f0_3 == "是":
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(co256_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(co256_dir)]
)
opt = []
for name in names:
if if_f0_3 == "是":
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
co256_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
co256_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
if if_f0_3 == "是":
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
)
else:
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
% (now_dir, sr2, now_dir, spk_id5)
)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
yield get_info_str("write filelist done")
if gpus16:
cmd = (
python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 == "是" else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "是" else 0,
1 if if_cache_gpu17 == "是" else 0,
)
)
else:
cmd = (
python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 == "是" else 0,
batch_size12,
total_epoch11,
save_epoch10,
pretrained_G14,
pretrained_D15,
1 if if_save_latest13 == "是" else 0,
1 if if_cache_gpu17 == "是" else 0,
)
)
yield get_info_str(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
#######step3b:训练索引
feature_dir = "%s/3_feature256" % (exp_dir)
npys = []
listdir_res = list(os.listdir(feature_dir))
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = big_npy.shape[0] // 39
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
yield get_info_str("training index")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
yield get_info_str("adding index")
index.add(big_npy)
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)
)
yield get_info_str("全流程结束!")
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
if (
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
== False
):
return {"__type__": "update"}, {"__type__": "update"}
try:
with open(
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
) as f:
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
sr, f0 = info["sample_rate"], info["if_f0"]
return sr, str(f0)
except:
traceback.print_exc()
return {"__type__": "update"}, {"__type__": "update"}
with gr.Blocks() as app:
gr.Markdown(
value=i18n(
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.
如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录使用需遵守的协议-LICENSE.txt."
)
)
with gr.Tabs():
with gr.TabItem(i18n("模型推理")):
with gr.Row():
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
refresh_button = gr.Button(i18n("刷新音色列表"), variant="primary")
refresh_button.click(fn=change_choices, inputs=[], outputs=[sid0])
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
clean_button.click(fn=clean, inputs=[], outputs=[sid0])
sid0.change(
fn=get_vc,
inputs=[sid0],
outputs=[spk_item],
)
with gr.Group():
gr.Markdown(
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
)
with gr.Row():
with gr.Column():
vc_transform0 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
input_audio0 = gr.Textbox(
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs\\冬之花clip1.wav",
)
f0method0 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
choices=["pm", "harvest"],
value="pm",
interactive=True,
)
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("特征检索库文件路径"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index",
interactive=True,
)
file_big_npy1 = gr.Textbox(
label=i18n("特征文件路径"),
value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
interactive=True,
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="检索特征占比",
value=1,
interactive=True,
)
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
but0 = gr.Button(i18n("转换"), variant="primary")
with gr.Column():
vc_output1 = gr.Textbox(label=i18n("输出信息"))
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
but0.click(
vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_big_npy1,
index_rate1,
],
[vc_output1, vc_output2],
)
with gr.Group():
gr.Markdown(
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
)
with gr.Row():
with gr.Column():
vc_transform1 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
f0method1 = gr.Radio(
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
choices=["pm", "harvest"],
value="pm",
interactive=True,
)
with gr.Column():
file_index2 = gr.Textbox(
label=i18n("特征检索库文件路径"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\added_IVF677_Flat_nprobe_7.index",
interactive=True,
)
file_big_npy2 = gr.Textbox(
label=i18n("特征文件路径"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
interactive=True,
)
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=1,
interactive=True,
)
with gr.Column():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
value="E:\codes\py39\\vits_vc_gpu_train\\todo-songs",
)
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc_multi,
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index2,
file_big_npy2,
index_rate2,
],
[vc_output3],
)
with gr.TabItem(i18n("伴奏人声分离")):
with gr.Group():
gr.Markdown(
value=i18n(
"人声伴奏分离批量处理, 使用UVR5模型.
不带和声用HP2, 带和声且提取的人声不需要和声用HP5
合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)"
)
)
with gr.Row():
with gr.Column():
dir_wav_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径"),
value="E:\\codes\\py39\\vits_vc_gpu_train\\todo-songs",
)
wav_inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
with gr.Column():
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
opt_vocal_root = gr.Textbox(
label=i18n("指定输出人声文件夹"), value="opt"
)
opt_ins_root = gr.Textbox(label=i18n("指定输出乐器文件夹"), value="opt")
but2 = gr.Button(i18n("转换"), variant="primary")
vc_output4 = gr.Textbox(label=i18n("输出信息"))
but2.click(
uvr,
[
model_choose,
dir_wav_input,
opt_vocal_root,
wav_inputs,
opt_ins_root,
],
[vc_output4],
)
with gr.TabItem(i18n("训练")):
gr.Markdown(
value=i18n(
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
)
)
with gr.Row():
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
sr2 = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=["是", "否"],
value="是",
interactive=True,
)
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
gr.Markdown(
value=i18n(
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
)
)
with gr.Row():
trainset_dir4 = gr.Textbox(
label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src"
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("请指定说话人id"),
value=0,
interactive=True,
)
but1 = gr.Button(i18n("处理数据"), variant="primary")
info1 = gr.Textbox(label=i18n("输出信息"), value="")
but1.click(
preprocess_dataset, [trainset_dir4, exp_dir1, sr2], [info1]
)
with gr.Group():
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
with gr.Row():
with gr.Column():
gpus6 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
)
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
with gr.Column():
np7 = gr.Slider(
minimum=0,
maximum=ncpu,
step=1,
label=i18n("提取音高使用的CPU进程数"),
value=ncpu,
interactive=True,
)
f0method8 = gr.Radio(
label=i18n(
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
),
choices=["pm", "harvest", "dio"],
value="harvest",
interactive=True,
)
but2 = gr.Button(i18n("特征提取"), variant="primary")
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but2.click(
extract_f0_feature,
[gpus6, np7, f0method8, if_f0_3, exp_dir1],
[info2],
)
with gr.Group():
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
with gr.Row():
save_epoch10 = gr.Slider(
minimum=0,
maximum=50,
step=1,
label=i18n("保存频率save_every_epoch"),
value=5,
interactive=True,
)
total_epoch11 = gr.Slider(
minimum=0,
maximum=1000,
step=1,
label=i18n("总训练轮数total_epoch"),
value=20,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=0,
maximum=32,
step=1,
label="每张显卡的batch_size",
value=4,
interactive=True,
)
if_save_latest13 = gr.Radio(
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
choices=["是", "否"],
value="否",
interactive=True,
)
if_cache_gpu17 = gr.Radio(
label=i18n(
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
),
choices=["是", "否"],
value="是",
interactive=True,
)
with gr.Row():
pretrained_G14 = gr.Textbox(
label=i18n("加载预训练底模G路径"),
value="pretrained/f0G40k.pth",
interactive=True,
)
pretrained_D15 = gr.Textbox(
label=i18n("加载预训练底模D路径"),
value="pretrained/f0D40k.pth",
interactive=True,
)
sr2.change(
change_sr2, [sr2, if_f0_3], [pretrained_G14, pretrained_D15]
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2],
[np7, f0method8, pretrained_G14, pretrained_D15],
)
gpus16 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
)
but3 = gr.Button(i18n("训练模型"), variant="primary")
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
but5 = gr.Button(i18n("一键训练"), variant="primary")
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
],
info3,
)
but4.click(train_index, [exp_dir1], info3)
but5.click(
train1key,
[
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
gpus6,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
],
info3,
)
with gr.TabItem(i18n("ckpt处理")):
with gr.Group():
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
with gr.Row():
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True)
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True)
alpha_a = gr.Slider(
minimum=0,
maximum=1,
label=i18n("A模型权重"),
value=0.5,
interactive=True,
)
with gr.Row():
sr_ = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
if_f0_ = gr.Radio(
label=i18n("模型是否带音高指导"),
choices=["是", "否"],
value="是",
interactive=True,
)
info__ = gr.Textbox(
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
)
name_to_save0 = gr.Textbox(
label=i18n("保存的模型名不带后缀"),
value="",
max_lines=1,
interactive=True,
)
with gr.Row():
but6 = gr.Button(i18n("融合"), variant="primary")
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but6.click(
merge,
[ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0],
info4,
) # def merge(path1,path2,alpha1,sr,f0,info):
with gr.Group():
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
with gr.Row():
ckpt_path0 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
info_ = gr.Textbox(
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True
)
name_to_save1 = gr.Textbox(
label=i18n("保存的文件名, 默认空为和源文件同名"),
value="",
max_lines=8,
interactive=True,
)
with gr.Row():
but7 = gr.Button(i18n("修改"), variant="primary")
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5)
with gr.Group():
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
with gr.Row():
ckpt_path1 = gr.Textbox(
label=i18n("模型路径"), value="", interactive=True
)
but8 = gr.Button(i18n("查看"), variant="primary")
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
but8.click(show_info, [ckpt_path1], info6)
with gr.Group():
gr.Markdown(
value=i18n(
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
)
)
with gr.Row():
ckpt_path2 = gr.Textbox(
label=i18n("模型路径"),
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
interactive=True,
)
save_name = gr.Textbox(
label=i18n("保存名"), value="", interactive=True
)
sr__ = gr.Radio(
label=i18n("目标采样率"),
choices=["32k", "40k", "48k"],
value="40k",
interactive=True,
)
if_f0__ = gr.Radio(
label=i18n("模型是否带音高指导,1是0否"),
choices=["1", "0"],
value="1",
interactive=True,
)
info___ = gr.Textbox(
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
)
but9 = gr.Button(i18n("提取"), variant="primary")
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
ckpt_path2.change(change_info_, [ckpt_path2], [sr__, if_f0__])
but9.click(
extract_small_model,
[ckpt_path2, save_name, sr__, if_f0__, info___],
info7,
)
# with gr.TabItem(i18n("招募音高曲线前端编辑器")):
# gr.Markdown(value=i18n("加开发群联系我xxxxx"))
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")):
# gr.Markdown(value=i18n("xxxxx"))
if iscolab:
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
else:
app.queue(concurrency_count=511, max_size=1022).launch(
server_name="0.0.0.0",
inbrowser=not noautoopen,
server_port=listen_port,
quiet=True,
)