import os import numpy as np import ffmpeg from fairseq import checkpoint_utils def get_index_path_from_model(sid): return next( ( f for f in [ os.path.join(root, name) for root, dirs, files in os.walk(os.getenv("index_root"), topdown=False) for name in files if name.endswith(".index") and "trained" not in name ] if sid.split(".")[0] in f ), "", ) def load_hubert(config): models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["assets/hubert/hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() return hubert_model.eval() def load_audio(file, sr): try: # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26 # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. file = ( file.strip(" ").strip('"').strip("\n").strip('"').strip(" ") ) # 防止小白拷路径头尾带了空格和"和回车 out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except Exception as e: raise RuntimeError(f"Failed to load audio: {e}") return np.frombuffer(out, np.float32).flatten()