mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 19:15:04 +08:00
484 lines
16 KiB
Python
484 lines
16 KiB
Python
import argparse
|
||
import glob
|
||
import json
|
||
import logging
|
||
import os
|
||
import subprocess
|
||
import sys
|
||
import shutil
|
||
|
||
import numpy as np
|
||
import torch
|
||
from scipy.io.wavfile import read
|
||
|
||
MATPLOTLIB_FLAG = False
|
||
|
||
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
||
logger = logging
|
||
|
||
|
||
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
||
assert os.path.isfile(checkpoint_path)
|
||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||
|
||
##################
|
||
def go(model, bkey):
|
||
saved_state_dict = checkpoint_dict[bkey]
|
||
if hasattr(model, "module"):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
new_state_dict = {}
|
||
for k, v in state_dict.items(): # 模型需要的shape
|
||
try:
|
||
new_state_dict[k] = saved_state_dict[k]
|
||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||
logger.warning(
|
||
"shape-%s-mismatch. need: %s, get: %s",
|
||
k,
|
||
state_dict[k].shape,
|
||
saved_state_dict[k].shape,
|
||
) #
|
||
raise KeyError
|
||
except:
|
||
# logger.info(traceback.format_exc())
|
||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||
new_state_dict[k] = v # 模型自带的随机值
|
||
if hasattr(model, "module"):
|
||
model.module.load_state_dict(new_state_dict, strict=False)
|
||
else:
|
||
model.load_state_dict(new_state_dict, strict=False)
|
||
return model
|
||
|
||
go(combd, "combd")
|
||
model = go(sbd, "sbd")
|
||
#############
|
||
logger.info("Loaded model weights")
|
||
|
||
iteration = checkpoint_dict["iteration"]
|
||
learning_rate = checkpoint_dict["learning_rate"]
|
||
if (
|
||
optimizer is not None and load_opt == 1
|
||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||
# try:
|
||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||
# except:
|
||
# traceback.print_exc()
|
||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||
return model, optimizer, learning_rate, iteration
|
||
|
||
|
||
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
||
# assert os.path.isfile(checkpoint_path)
|
||
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||
# iteration = checkpoint_dict['iteration']
|
||
# learning_rate = checkpoint_dict['learning_rate']
|
||
# if optimizer is not None:
|
||
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||
# # print(1111)
|
||
# saved_state_dict = checkpoint_dict['model']
|
||
# # print(1111)
|
||
#
|
||
# if hasattr(model, 'module'):
|
||
# state_dict = model.module.state_dict()
|
||
# else:
|
||
# state_dict = model.state_dict()
|
||
# new_state_dict= {}
|
||
# for k, v in state_dict.items():
|
||
# try:
|
||
# new_state_dict[k] = saved_state_dict[k]
|
||
# except:
|
||
# logger.info("%s is not in the checkpoint" % k)
|
||
# new_state_dict[k] = v
|
||
# if hasattr(model, 'module'):
|
||
# model.module.load_state_dict(new_state_dict)
|
||
# else:
|
||
# model.load_state_dict(new_state_dict)
|
||
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
||
# checkpoint_path, iteration))
|
||
# return model, optimizer, learning_rate, iteration
|
||
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
||
assert os.path.isfile(checkpoint_path)
|
||
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
||
|
||
saved_state_dict = checkpoint_dict["model"]
|
||
if hasattr(model, "module"):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
new_state_dict = {}
|
||
for k, v in state_dict.items(): # 模型需要的shape
|
||
try:
|
||
new_state_dict[k] = saved_state_dict[k]
|
||
if saved_state_dict[k].shape != state_dict[k].shape:
|
||
logger.warning(
|
||
"shape-%s-mismatch|need-%s|get-%s",
|
||
k,
|
||
state_dict[k].shape,
|
||
saved_state_dict[k].shape,
|
||
) #
|
||
raise KeyError
|
||
except:
|
||
# logger.info(traceback.format_exc())
|
||
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
||
new_state_dict[k] = v # 模型自带的随机值
|
||
if hasattr(model, "module"):
|
||
model.module.load_state_dict(new_state_dict, strict=False)
|
||
else:
|
||
model.load_state_dict(new_state_dict, strict=False)
|
||
logger.info("Loaded model weights")
|
||
|
||
iteration = checkpoint_dict["iteration"]
|
||
learning_rate = checkpoint_dict["learning_rate"]
|
||
if (
|
||
optimizer is not None and load_opt == 1
|
||
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
||
# try:
|
||
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
||
# except:
|
||
# traceback.print_exc()
|
||
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
||
return model, optimizer, learning_rate, iteration
|
||
|
||
|
||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||
logger.info(
|
||
"Saving model and optimizer state at epoch {} to {}".format(
|
||
iteration, checkpoint_path
|
||
)
|
||
)
|
||
if hasattr(model, "module"):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
torch.save(
|
||
{
|
||
"model": state_dict,
|
||
"iteration": iteration,
|
||
"optimizer": optimizer.state_dict(),
|
||
"learning_rate": learning_rate,
|
||
},
|
||
checkpoint_path,
|
||
)
|
||
|
||
|
||
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
||
logger.info(
|
||
"Saving model and optimizer state at epoch {} to {}".format(
|
||
iteration, checkpoint_path
|
||
)
|
||
)
|
||
if hasattr(combd, "module"):
|
||
state_dict_combd = combd.module.state_dict()
|
||
else:
|
||
state_dict_combd = combd.state_dict()
|
||
if hasattr(sbd, "module"):
|
||
state_dict_sbd = sbd.module.state_dict()
|
||
else:
|
||
state_dict_sbd = sbd.state_dict()
|
||
torch.save(
|
||
{
|
||
"combd": state_dict_combd,
|
||
"sbd": state_dict_sbd,
|
||
"iteration": iteration,
|
||
"optimizer": optimizer.state_dict(),
|
||
"learning_rate": learning_rate,
|
||
},
|
||
checkpoint_path,
|
||
)
|
||
|
||
|
||
def summarize(
|
||
writer,
|
||
global_step,
|
||
scalars={},
|
||
histograms={},
|
||
images={},
|
||
audios={},
|
||
audio_sampling_rate=22050,
|
||
):
|
||
for k, v in scalars.items():
|
||
writer.add_scalar(k, v, global_step)
|
||
for k, v in histograms.items():
|
||
writer.add_histogram(k, v, global_step)
|
||
for k, v in images.items():
|
||
writer.add_image(k, v, global_step, dataformats="HWC")
|
||
for k, v in audios.items():
|
||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||
|
||
|
||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||
x = f_list[-1]
|
||
logger.debug(x)
|
||
return x
|
||
|
||
|
||
def plot_spectrogram_to_numpy(spectrogram):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger("matplotlib")
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(10, 2))
|
||
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
||
plt.colorbar(im, ax=ax)
|
||
plt.xlabel("Frames")
|
||
plt.ylabel("Channels")
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def plot_alignment_to_numpy(alignment, info=None):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger("matplotlib")
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(6, 4))
|
||
im = ax.imshow(
|
||
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
||
)
|
||
fig.colorbar(im, ax=ax)
|
||
xlabel = "Decoder timestep"
|
||
if info is not None:
|
||
xlabel += "\n\n" + info
|
||
plt.xlabel(xlabel)
|
||
plt.ylabel("Encoder timestep")
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def load_wav_to_torch(full_path):
|
||
sampling_rate, data = read(full_path)
|
||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||
|
||
|
||
def load_filepaths_and_text(filename, split="|"):
|
||
try:
|
||
with open(filename, encoding="utf-8") as f:
|
||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
except UnicodeDecodeError:
|
||
with open(filename) as f:
|
||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
|
||
return filepaths_and_text
|
||
|
||
|
||
def get_hparams(init=True):
|
||
"""
|
||
todo:
|
||
结尾七人组:
|
||
保存频率、总epoch done
|
||
bs done
|
||
pretrainG、pretrainD done
|
||
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
||
if_latest done
|
||
模型:if_f0 done
|
||
采样率:自动选择config done
|
||
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
||
|
||
-m:
|
||
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
||
-c不要了
|
||
"""
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"-se",
|
||
"--save_every_epoch",
|
||
type=int,
|
||
required=True,
|
||
help="checkpoint save frequency (epoch)",
|
||
)
|
||
parser.add_argument(
|
||
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
||
)
|
||
parser.add_argument(
|
||
"-pg", "--pretrainG", type=str, default="", help="Pretrained Generator path"
|
||
)
|
||
parser.add_argument(
|
||
"-pd", "--pretrainD", type=str, default="", help="Pretrained Discriminator path"
|
||
)
|
||
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
||
parser.add_argument(
|
||
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
||
)
|
||
parser.add_argument(
|
||
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
||
) # -m
|
||
parser.add_argument(
|
||
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
||
)
|
||
parser.add_argument(
|
||
"-sw",
|
||
"--save_every_weights",
|
||
type=str,
|
||
default="0",
|
||
help="save the extracted model in weights directory when saving checkpoints",
|
||
)
|
||
parser.add_argument(
|
||
"-v", "--version", type=str, required=True, help="model version"
|
||
)
|
||
parser.add_argument(
|
||
"-f0",
|
||
"--if_f0",
|
||
type=int,
|
||
required=True,
|
||
help="use f0 as one of the inputs of the model, 1 or 0",
|
||
)
|
||
parser.add_argument(
|
||
"-l",
|
||
"--if_latest",
|
||
type=int,
|
||
required=True,
|
||
help="if only save the latest G/D pth file, 1 or 0",
|
||
)
|
||
parser.add_argument(
|
||
"-c",
|
||
"--if_cache_data_in_gpu",
|
||
type=int,
|
||
required=True,
|
||
help="if caching the dataset in GPU memory, 1 or 0",
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
name = args.experiment_dir
|
||
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
||
|
||
config_save_path = os.path.join(experiment_dir, "config.json")
|
||
with open(config_save_path, "r") as f:
|
||
config = json.load(f)
|
||
|
||
hparams = HParams(**config)
|
||
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
||
hparams.save_every_epoch = args.save_every_epoch
|
||
hparams.name = name
|
||
hparams.total_epoch = args.total_epoch
|
||
hparams.pretrainG = args.pretrainG
|
||
hparams.pretrainD = args.pretrainD
|
||
hparams.version = args.version
|
||
hparams.gpus = args.gpus
|
||
hparams.train.batch_size = args.batch_size
|
||
hparams.sample_rate = args.sample_rate
|
||
hparams.if_f0 = args.if_f0
|
||
hparams.if_latest = args.if_latest
|
||
hparams.save_every_weights = args.save_every_weights
|
||
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
||
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
||
return hparams
|
||
|
||
|
||
def get_hparams_from_dir(model_dir):
|
||
config_save_path = os.path.join(model_dir, "config.json")
|
||
with open(config_save_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
hparams.model_dir = model_dir
|
||
return hparams
|
||
|
||
|
||
def get_hparams_from_file(config_path):
|
||
with open(config_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
return hparams
|
||
|
||
|
||
def check_git_hash(model_dir):
|
||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||
logger.warning(
|
||
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||
source_dir
|
||
)
|
||
)
|
||
return
|
||
|
||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||
|
||
path = os.path.join(model_dir, "githash")
|
||
if os.path.exists(path):
|
||
saved_hash = open(path).read()
|
||
if saved_hash != cur_hash:
|
||
logger.warning(
|
||
"git hash values are different. {}(saved) != {}(current)".format(
|
||
saved_hash[:8], cur_hash[:8]
|
||
)
|
||
)
|
||
else:
|
||
open(path, "w").write(cur_hash)
|
||
|
||
|
||
def get_logger(model_dir, filename="train.log"):
|
||
global logger
|
||
logger = logging.getLogger(os.path.basename(model_dir))
|
||
logger.setLevel(logging.DEBUG)
|
||
|
||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||
h.setLevel(logging.DEBUG)
|
||
h.setFormatter(formatter)
|
||
logger.addHandler(h)
|
||
return logger
|
||
|
||
|
||
class HParams:
|
||
def __init__(self, **kwargs):
|
||
for k, v in kwargs.items():
|
||
if type(v) == dict:
|
||
v = HParams(**v)
|
||
self[k] = v
|
||
|
||
def keys(self):
|
||
return self.__dict__.keys()
|
||
|
||
def items(self):
|
||
return self.__dict__.items()
|
||
|
||
def values(self):
|
||
return self.__dict__.values()
|
||
|
||
def __len__(self):
|
||
return len(self.__dict__)
|
||
|
||
def __getitem__(self, key):
|
||
return getattr(self, key)
|
||
|
||
def __setitem__(self, key, value):
|
||
return setattr(self, key, value)
|
||
|
||
def __contains__(self, key):
|
||
return key in self.__dict__
|
||
|
||
def __repr__(self):
|
||
return self.__dict__.__repr__()
|