Retrieval-based-Voice-Conve.../infer/modules/ipex/attention.py
github-actions[bot] e9dd11bddb
chore(sync): merge dev into main (#1379)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 17:14:33 +08:00

213 lines
8.2 KiB
Python

import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long
original_torch_bmm = torch.bmm
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
batch_size_attention, input_tokens, mat2_shape = (
input.shape[0],
input.shape[1],
mat2.shape[2],
)
block_multiply = input.element_size()
slice_block_size = input_tokens * mat2_shape / 1024 / 1024 * block_multiply
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
if block_size > 4:
do_split = True
# Find something divisible with the input_tokens
while (split_slice_size * slice_block_size) > 4:
split_slice_size = split_slice_size // 2
if split_slice_size <= 1:
split_slice_size = 1
break
else:
do_split = False
split_2_slice_size = input_tokens
if split_slice_size * slice_block_size > 4:
slice_block_size2 = split_slice_size * mat2_shape / 1024 / 1024 * block_multiply
do_split_2 = True
# Find something divisible with the input_tokens
while (split_2_slice_size * slice_block_size2) > 4:
split_2_slice_size = split_2_slice_size // 2
if split_2_slice_size <= 1:
split_2_slice_size = 1
break
else:
do_split_2 = False
if do_split:
hidden_states = torch.zeros(
input.shape[0],
input.shape[1],
mat2.shape[2],
device=input.device,
dtype=input.dtype,
)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(
input_tokens // split_2_slice_size
): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
hidden_states[
start_idx:end_idx, start_idx_2:end_idx_2
] = original_torch_bmm(
input[start_idx:end_idx, start_idx_2:end_idx_2],
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
out=out,
)
else:
hidden_states[start_idx:end_idx] = original_torch_bmm(
input[start_idx:end_idx], mat2[start_idx:end_idx], out=out
)
else:
return original_torch_bmm(input, mat2, out=out)
return hidden_states
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
def scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False
):
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
if len(query.shape) == 3:
batch_size_attention, query_tokens, shape_four = query.shape
shape_one = 1
no_shape_one = True
else:
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
no_shape_one = False
block_multiply = query.element_size()
slice_block_size = (
shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply
)
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
if block_size > 4:
do_split = True
# Find something divisible with the shape_one
while (split_slice_size * slice_block_size) > 4:
split_slice_size = split_slice_size // 2
if split_slice_size <= 1:
split_slice_size = 1
break
else:
do_split = False
split_2_slice_size = query_tokens
if split_slice_size * slice_block_size > 4:
slice_block_size2 = (
shape_one * split_slice_size * shape_four / 1024 / 1024 * block_multiply
)
do_split_2 = True
# Find something divisible with the batch_size_attention
while (split_2_slice_size * slice_block_size2) > 4:
split_2_slice_size = split_2_slice_size // 2
if split_2_slice_size <= 1:
split_2_slice_size = 1
break
else:
do_split_2 = False
if do_split:
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(
query_tokens // split_2_slice_size
): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if no_shape_one:
hidden_states[
start_idx:end_idx, start_idx_2:end_idx_2
] = original_scaled_dot_product_attention(
query[start_idx:end_idx, start_idx_2:end_idx_2],
key[start_idx:end_idx, start_idx_2:end_idx_2],
value[start_idx:end_idx, start_idx_2:end_idx_2],
attn_mask=attn_mask[
start_idx:end_idx, start_idx_2:end_idx_2
]
if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
else:
hidden_states[
:, start_idx:end_idx, start_idx_2:end_idx_2
] = original_scaled_dot_product_attention(
query[:, start_idx:end_idx, start_idx_2:end_idx_2],
key[:, start_idx:end_idx, start_idx_2:end_idx_2],
value[:, start_idx:end_idx, start_idx_2:end_idx_2],
attn_mask=attn_mask[
:, start_idx:end_idx, start_idx_2:end_idx_2
]
if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
else:
if no_shape_one:
hidden_states[
start_idx:end_idx
] = original_scaled_dot_product_attention(
query[start_idx:end_idx],
key[start_idx:end_idx],
value[start_idx:end_idx],
attn_mask=attn_mask[start_idx:end_idx]
if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
else:
hidden_states[
:, start_idx:end_idx
] = original_scaled_dot_product_attention(
query[:, start_idx:end_idx],
key[:, start_idx:end_idx],
value[:, start_idx:end_idx],
attn_mask=attn_mask[:, start_idx:end_idx]
if attn_mask is not None
else attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
else:
return original_scaled_dot_product_attention(
query,
key,
value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
return hidden_states
def attention_init():
# ARC GPUs can't allocate more than 4GB to a single block:
torch.bmm = torch_bmm
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention