mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
794 lines
30 KiB
Python
794 lines
30 KiB
Python
import os
|
|
import sys
|
|
from dotenv import load_dotenv
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
load_dotenv()
|
|
from infer.modules.vc.modules import VC
|
|
from i18n.i18n import I18nAuto
|
|
from configs.config import Config
|
|
from sklearn.cluster import MiniBatchKMeans
|
|
import torch, platform
|
|
import numpy as np
|
|
import gradio as gr
|
|
import faiss
|
|
import fairseq
|
|
import pathlib
|
|
import json
|
|
from time import sleep
|
|
from subprocess import Popen
|
|
from random import shuffle
|
|
import warnings
|
|
import traceback
|
|
import threading
|
|
import shutil
|
|
import logging
|
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
logging.getLogger("httpx").setLevel(logging.WARNING)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
tmp = os.path.join(now_dir, "TEMP")
|
|
shutil.rmtree(tmp, ignore_errors=True)
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
|
os.makedirs(tmp, exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
|
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
|
os.environ["TEMP"] = tmp
|
|
warnings.filterwarnings("ignore")
|
|
torch.manual_seed(114514)
|
|
|
|
|
|
config = Config()
|
|
vc = VC(config)
|
|
|
|
|
|
if config.dml == True:
|
|
|
|
def forward_dml(ctx, x, scale):
|
|
ctx.scale = scale
|
|
res = x.clone().detach()
|
|
return res
|
|
|
|
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
|
i18n = I18nAuto()
|
|
logger.info(i18n)
|
|
# 判断YesNo有能用来Train和加速推理的N卡
|
|
ngpu = torch.cuda.device_count()
|
|
gpu_infos = []
|
|
mem = []
|
|
if_gpu_ok = False
|
|
|
|
if torch.cuda.is_available() or ngpu != 0:
|
|
for i in range(ngpu):
|
|
gpu_name = torch.cuda.get_device_name(i)
|
|
if any(
|
|
value in gpu_name.upper()
|
|
for value in [
|
|
"10",
|
|
"16",
|
|
"20",
|
|
"30",
|
|
"40",
|
|
"A2",
|
|
"A3",
|
|
"A4",
|
|
"P4",
|
|
"A50",
|
|
"500",
|
|
"A60",
|
|
"70",
|
|
"80",
|
|
"90",
|
|
"M4",
|
|
"T4",
|
|
"TITAN",
|
|
"4060",
|
|
"L",
|
|
"6000",
|
|
]
|
|
):
|
|
# A10#A100#V100#A40#P40#M40#K80#A4500
|
|
if_gpu_ok = True # 至少有一张能用的N卡
|
|
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
|
mem.append(
|
|
int(
|
|
torch.cuda.get_device_properties(i).total_memory
|
|
/ 1024
|
|
/ 1024
|
|
/ 1024
|
|
+ 0.4
|
|
)
|
|
)
|
|
if if_gpu_ok and len(gpu_infos) > 0:
|
|
gpu_info = "\n".join(gpu_infos)
|
|
default_batch_size = min(mem) // 2
|
|
else:
|
|
gpu_info = i18n("Unfortunately, there is no compatible GPU available to support your training.")
|
|
default_batch_size = 1
|
|
gpus = "-".join([i[0] for i in gpu_infos])
|
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent):
|
|
"""Small button with single emoji as text, fits inside gradio forms"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(variant="tool", **kwargs)
|
|
|
|
def get_block_name(self):
|
|
return "button"
|
|
|
|
|
|
weight_root = os.getenv("weight_root")
|
|
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
|
index_root = os.getenv("index_root")
|
|
outside_index_root = os.getenv("outside_index_root")
|
|
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
index_paths = []
|
|
|
|
def update_audio_path(uploaded_file):
|
|
# If no file was uploaded, return an empty string.
|
|
if uploaded_file is None:
|
|
return ""
|
|
# If multiple files were allowed, take the first one.
|
|
if isinstance(uploaded_file, list):
|
|
uploaded_file = uploaded_file[0]
|
|
# Depending on Gradio version, the file may be a dict or an object with a 'name' attribute.
|
|
if isinstance(uploaded_file, dict):
|
|
return uploaded_file.get("name", "")
|
|
if hasattr(uploaded_file, "name"):
|
|
return uploaded_file.name
|
|
return str(uploaded_file)
|
|
|
|
|
|
def lookup_indices(index_root):
|
|
global index_paths
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
for name in files:
|
|
if name.endswith(".index") and "trained" not in name:
|
|
index_paths.append("%s/%s" % (root, name))
|
|
|
|
|
|
lookup_indices(index_root)
|
|
lookup_indices(outside_index_root)
|
|
uvr5_names = []
|
|
for name in os.listdir(weight_uvr5_root):
|
|
if name.endswith(".pth") or "onnx" in name:
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
|
|
def change_choices():
|
|
names = []
|
|
for name in os.listdir(weight_root):
|
|
if name.endswith(".pth"):
|
|
names.append(name)
|
|
index_paths = []
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
for name in files:
|
|
if name.endswith(".index") and "trained" not in name:
|
|
index_paths.append("%s/%s" % (root, name))
|
|
return {"choices": sorted(names), "__type__": "update"}, {
|
|
"choices": sorted(index_paths),
|
|
"__type__": "update",
|
|
}
|
|
|
|
|
|
def clean():
|
|
return {"value": "", "__type__": "update"}
|
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath):
|
|
from infer.modules.onnx.export import export_onnx as eo
|
|
|
|
eo(ModelPath, ExportedPath)
|
|
|
|
|
|
sr_dict = {
|
|
"32k": 32000,
|
|
"40k": 40000,
|
|
"48k": 48000,
|
|
}
|
|
|
|
|
|
def if_done(done, p):
|
|
while 1:
|
|
if p.poll() is None:
|
|
sleep(0.5)
|
|
else:
|
|
break
|
|
done[0] = True
|
|
|
|
|
|
def if_done_multi(done, ps):
|
|
while 1:
|
|
# poll==None代表进程未结束
|
|
# 只要有一个进程未结束都不停
|
|
flag = 1
|
|
for p in ps:
|
|
if p.poll() is None:
|
|
flag = 0
|
|
sleep(0.5)
|
|
break
|
|
if flag == 1:
|
|
break
|
|
done[0] = True
|
|
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
|
sr = sr_dict[sr]
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
|
config.python_cmd,
|
|
trainset_dir,
|
|
sr,
|
|
n_p,
|
|
now_dir,
|
|
exp_dir,
|
|
config.noparallel,
|
|
config.preprocess_per,
|
|
)
|
|
logger.info("Execute: " + cmd)
|
|
# , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
|
p = Popen(cmd, shell=True)
|
|
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
logger.info(log)
|
|
yield log
|
|
|
|
|
|
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
|
gpus = gpus.split("-")
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
|
f.close()
|
|
if if_f0:
|
|
if f0method != "rmvpe_gpu":
|
|
cmd = (
|
|
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
|
% (
|
|
config.python_cmd,
|
|
now_dir,
|
|
exp_dir,
|
|
n_p,
|
|
f0method,
|
|
)
|
|
)
|
|
logger.info("Execute: " + cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
|
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done,
|
|
args=(
|
|
done,
|
|
p,
|
|
),
|
|
).start()
|
|
else:
|
|
if gpus_rmvpe != "-":
|
|
gpus_rmvpe = gpus_rmvpe.split("-")
|
|
leng = len(gpus_rmvpe)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus_rmvpe):
|
|
cmd = (
|
|
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
|
% (
|
|
config.python_cmd,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
now_dir,
|
|
exp_dir,
|
|
config.is_half,
|
|
)
|
|
)
|
|
logger.info("Execute: " + cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
|
ps.append(p)
|
|
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done_multi, #
|
|
args=(
|
|
done,
|
|
ps,
|
|
),
|
|
).start()
|
|
else:
|
|
cmd = (
|
|
config.python_cmd
|
|
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
|
% (
|
|
now_dir,
|
|
exp_dir,
|
|
)
|
|
)
|
|
logger.info("Execute: " + cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
|
p.wait()
|
|
done = [True]
|
|
while 1:
|
|
with open(
|
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
|
) as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
logger.info(log)
|
|
yield log
|
|
# 对不同part分别开多进程
|
|
"""
|
|
n_part=int(sys.argv[1])
|
|
i_part=int(sys.argv[2])
|
|
i_gpu=sys.argv[3]
|
|
exp_dir=sys.argv[4]
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
|
"""
|
|
leng = len(gpus)
|
|
ps = []
|
|
for idx, n_g in enumerate(gpus):
|
|
cmd = (
|
|
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s'
|
|
% (
|
|
config.python_cmd,
|
|
config.device,
|
|
leng,
|
|
idx,
|
|
n_g,
|
|
now_dir,
|
|
exp_dir,
|
|
version19,
|
|
config.is_half,
|
|
)
|
|
)
|
|
logger.info("Execute: " + cmd)
|
|
p = Popen(
|
|
cmd, shell=True, cwd=now_dir
|
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
|
ps.append(p)
|
|
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
done = [False]
|
|
threading.Thread(
|
|
target=if_done_multi,
|
|
args=(
|
|
done,
|
|
ps,
|
|
),
|
|
).start()
|
|
while 1:
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
yield (f.read())
|
|
sleep(1)
|
|
if done[0]:
|
|
break
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
log = f.read()
|
|
logger.info(log)
|
|
yield log
|
|
|
|
|
|
def get_pretrained_models(path_str, f0_str, sr2):
|
|
if_pretrained_generator_exist = os.access(
|
|
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if_pretrained_discriminator_exist = os.access(
|
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
|
)
|
|
if not if_pretrained_generator_exist:
|
|
logger.warning(
|
|
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
|
path_str,
|
|
f0_str,
|
|
sr2,
|
|
)
|
|
if not if_pretrained_discriminator_exist:
|
|
logger.warning(
|
|
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
|
path_str,
|
|
f0_str,
|
|
sr2,
|
|
)
|
|
return (
|
|
(
|
|
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_generator_exist
|
|
else ""
|
|
),
|
|
(
|
|
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
|
if if_pretrained_discriminator_exist
|
|
else ""
|
|
),
|
|
)
|
|
|
|
|
|
def change_sr2(sr2, if_f0_3, version19):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
return get_pretrained_models(path_str, f0_str, sr2)
|
|
|
|
|
|
def change_version19(sr2, if_f0_3, version19):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
if sr2 == "32k" and version19 == "v1":
|
|
sr2 = "40k"
|
|
to_return_sr2 = (
|
|
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
|
if version19 == "v1"
|
|
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
|
)
|
|
f0_str = "f0" if if_f0_3 else ""
|
|
return (
|
|
*get_pretrained_models(path_str, f0_str, sr2),
|
|
to_return_sr2,
|
|
)
|
|
|
|
# f0method8,pretrained_G14,pretrained_D15
|
|
def change_f0(if_f0_3, sr2, version19):
|
|
path_str = "" if version19 == "v1" else "_v2"
|
|
return (
|
|
{"visible": if_f0_3, "__type__": "update"},
|
|
{"visible": if_f0_3, "__type__": "update"},
|
|
*get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
|
|
)
|
|
|
|
|
|
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
|
def change_info_(ckpt_path):
|
|
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
try:
|
|
with open(
|
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
|
) as f:
|
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
|
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
|
return sr, str(f0), version
|
|
except:
|
|
traceback.print_exc()
|
|
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
F0GPUVisible = config.dml == False
|
|
|
|
|
|
def change_f0_method(f0method8):
|
|
if f0method8 == "rmvpe_gpu":
|
|
visible = F0GPUVisible
|
|
else:
|
|
visible = False
|
|
return {"visible": visible, "__type__": "update"}
|
|
|
|
|
|
with gr.Blocks(title="RVC WebUI") as app:
|
|
gr.Markdown("## RVC WebUI")
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"This software is open source under the MIT license. The author does not have any control over the software. Users who use the software and distribute the sounds exported by the software are solely responsible. <br>If you do not agree with this clause, you cannot use or reference any codes and files within the software package. See the root directory <b>Agreement-LICENSE.txt</b> for details."
|
|
)
|
|
)
|
|
with gr.Tabs():
|
|
with gr.TabItem(i18n("Model Inference")):
|
|
with gr.Row():
|
|
sid0 = gr.Dropdown(label=i18n("Inferencing voice:"), choices=sorted(names))
|
|
with gr.Column():
|
|
refresh_button = gr.Button(
|
|
i18n("Refresh voice list and index path"), variant="primary"
|
|
)
|
|
clean_button = gr.Button(i18n("Unload voice to save GPU memory:"), variant="primary")
|
|
spk_item = gr.Slider(
|
|
minimum=0,
|
|
maximum=2333,
|
|
step=1,
|
|
label=i18n("Select Speaker/Singer ID:"),
|
|
value=0,
|
|
visible=False,
|
|
interactive=True,
|
|
)
|
|
clean_button.click(
|
|
fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
|
)
|
|
with gr.TabItem(i18n("Single Inference")):
|
|
with gr.Group():
|
|
with gr.Row():
|
|
with gr.Column():
|
|
vc_transform0 = gr.Number(
|
|
label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"),
|
|
value=0,
|
|
)
|
|
# Add a file uploader for drag & drop.
|
|
audio_upload = gr.File(
|
|
label=i18n("拖拽或选择音频文件"),
|
|
file_types=[".wav"],
|
|
file_count="single",
|
|
interactive=True,
|
|
)
|
|
# Existing textbox for the audio file path.
|
|
input_audio0 = gr.Textbox(
|
|
label=i18n("Enter the path of the audio file to be processed (default is the correct format example):"),
|
|
placeholder="C:\\Users\\Desktop\\model_example.wav",
|
|
interactive=True,
|
|
)
|
|
# When a file is uploaded, update the textbox.
|
|
audio_upload.change(
|
|
fn=update_audio_path, inputs=audio_upload, outputs=input_audio0
|
|
)
|
|
file_index1 = gr.Textbox(
|
|
label=i18n("Path to the feature index file. Leave blank to use the selected result from the dropdown:"),
|
|
placeholder="C:\\Users\\Desktop\\model_example.index",
|
|
interactive=True,
|
|
)
|
|
file_index2 = gr.Dropdown(
|
|
label=i18n("Auto-detect index path and select from the dropdown:"),
|
|
choices=sorted(index_paths),
|
|
interactive=True,
|
|
)
|
|
f0method0 = gr.Radio(
|
|
label=i18n(
|
|
"Select the pitch extraction algorithm ('pm': faster extraction but lower-quality speech; 'harvest': better bass but extremely slow; 'crepe': better quality but GPU intensive), 'rmvpe': best quality, and little GPU requirement"
|
|
),
|
|
choices=(["pm", "harvest", "crepe", "rmvpe"] if config.dml == False else ["pm", "harvest", "rmvpe"]),
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
|
|
with gr.Column():
|
|
resample_sr0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=48000,
|
|
label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"),
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
rms_mix_rate0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("Adjust the volume envelope scaling. Closer to 0, the more it mimicks the volume of the original vocals. Can help mask noise and make volume sound more natural when set relatively low. Closer to 1 will be more of a consistently loud volume:"),
|
|
value=0.25,
|
|
interactive=True,
|
|
)
|
|
protect0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label=i18n("Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:"),
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
filter_radius0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=7,
|
|
label=i18n("If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."),
|
|
value=3,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
index_rate1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("Search feature ratio (controls accent strength, too high has artifacting):"),
|
|
value=0.75,
|
|
interactive=True,
|
|
)
|
|
f0_file = gr.File(
|
|
label=i18n("F0 curve file (optional). One pitch per line. Replaces the default F0 and pitch modulation:"),
|
|
visible=False,
|
|
)
|
|
|
|
refresh_button.click(
|
|
fn=change_choices,
|
|
inputs=[],
|
|
outputs=[sid0, file_index2],
|
|
api_name="infer_refresh",
|
|
)
|
|
with gr.Group():
|
|
with gr.Column():
|
|
but0 = gr.Button(i18n("Convert"), variant="primary")
|
|
with gr.Row():
|
|
vc_output1 = gr.Textbox(label=i18n("Output information"))
|
|
vc_output2 = gr.Audio(label=i18n("Export audio (click on the three dots in the lower right corner to download)"))
|
|
but0.click(
|
|
vc.vc_single,
|
|
[
|
|
spk_item,
|
|
input_audio0,
|
|
vc_transform0,
|
|
f0_file,
|
|
f0method0,
|
|
file_index1,
|
|
file_index2,
|
|
index_rate1,
|
|
filter_radius0,
|
|
resample_sr0,
|
|
rms_mix_rate0,
|
|
protect0,
|
|
],
|
|
[vc_output1, vc_output2],
|
|
api_name="infer_convert",
|
|
)
|
|
with gr.TabItem(i18n("Batch Inference")):
|
|
gr.Markdown(
|
|
value=i18n(
|
|
"Batch conversion. Enter the folder containing the audio files to be converted or upload multiple audio files. The converted audio will be output in the specified folder (default: 'opt')."
|
|
)
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
vc_transform1 = gr.Number(
|
|
label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"),
|
|
value=0,
|
|
)
|
|
opt_input = gr.Textbox(
|
|
label=i18n("Specify output folder:"), value="opt"
|
|
)
|
|
file_index3 = gr.Textbox(
|
|
label=i18n("Path to the feature index file. Leave blank to use the selected result from the dropdown:"),
|
|
value="",
|
|
interactive=True,
|
|
)
|
|
file_index4 = gr.Dropdown(
|
|
label=i18n("Auto-detect index path and select from the dropdown:"),
|
|
choices=sorted(index_paths),
|
|
interactive=True,
|
|
)
|
|
f0method1 = gr.Radio(
|
|
label=i18n(
|
|
"Select the pitch extraction algorithm ('pm': faster extraction but lower-quality speech; 'harvest': better bass but extremely slow; 'crepe': better quality but GPU intensive), 'rmvpe': best quality, and little GPU requirement"
|
|
),
|
|
choices=(
|
|
["pm", "harvest", "crepe", "rmvpe"]
|
|
if config.dml == False
|
|
else ["pm", "harvest", "rmvpe"]
|
|
),
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
format1 = gr.Radio(
|
|
label=i18n("Export file format"),
|
|
choices=["wav", "flac", "mp3", "m4a"],
|
|
value="wav",
|
|
interactive=True,
|
|
)
|
|
|
|
refresh_button.click(
|
|
fn=lambda: change_choices()[1],
|
|
inputs=[],
|
|
outputs=file_index4,
|
|
api_name="infer_refresh_batch",
|
|
)
|
|
|
|
with gr.Column():
|
|
resample_sr1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=48000,
|
|
label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"),
|
|
value=0,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
rms_mix_rate1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n(
|
|
"Adjust the volume envelope scaling. Closer to 0, the more it mimicks the volume of the original vocals. Can help mask noise and make volume sound more natural when set relatively low. Closer to 1 will be more of a consistently loud volume:"
|
|
),
|
|
value=1,
|
|
interactive=True,
|
|
)
|
|
protect1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label=i18n(
|
|
"Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:"
|
|
),
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
filter_radius1 = gr.Slider(
|
|
minimum=0,
|
|
maximum=7,
|
|
label=i18n(
|
|
"If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."
|
|
),
|
|
value=3,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
index_rate2 = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label=i18n("Search feature ratio (controls accent strength, too high has artifacting):"),
|
|
value=1,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
dir_input = gr.Textbox(
|
|
label=i18n(
|
|
"Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):"
|
|
),
|
|
placeholder="C:\\Users\\Desktop\\input_vocal_dir",
|
|
)
|
|
inputs = gr.File(
|
|
file_count="multiple",
|
|
label=i18n("Multiple audio files can also be imported. If a folder path exists, this input is ignored."),
|
|
)
|
|
|
|
with gr.Row():
|
|
but1 = gr.Button(i18n("Convert"), variant="primary")
|
|
vc_output3 = gr.Textbox(label=i18n("Output information"))
|
|
|
|
but1.click(
|
|
vc.vc_multi,
|
|
[
|
|
spk_item,
|
|
dir_input,
|
|
opt_input,
|
|
inputs,
|
|
vc_transform1,
|
|
f0method1,
|
|
file_index3,
|
|
file_index4,
|
|
index_rate2,
|
|
filter_radius1,
|
|
resample_sr1,
|
|
rms_mix_rate1,
|
|
protect1,
|
|
format1,
|
|
],
|
|
[vc_output3],
|
|
api_name="infer_convert_batch",
|
|
)
|
|
sid0.change(
|
|
fn=vc.get_vc,
|
|
inputs=[sid0, protect0, protect1],
|
|
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
|
api_name="infer_change_voice",
|
|
)
|
|
if config.iscolab:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
|
else:
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
server_name="localhost",
|
|
inbrowser=not config.noautoopen,
|
|
server_port=config.listen_port,
|
|
quiet=True,
|
|
)
|