mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-17 03:40:10 +08:00
04a33b9709
顺便将所有print换成了统一的logger
148 lines
5.3 KiB
Python
148 lines
5.3 KiB
Python
import logging
|
||
import os
|
||
|
||
# os.system("wget -P cvec/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt")
|
||
import gradio as gr
|
||
from dotenv import load_dotenv
|
||
|
||
from configs.config import Config
|
||
from i18n.i18n import I18nAuto
|
||
from infer.modules.vc.modules import VC
|
||
|
||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
||
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
||
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
||
logger = logging.getLogger(__name__)
|
||
|
||
i18n = I18nAuto()
|
||
logger.info(i18n)
|
||
|
||
load_dotenv()
|
||
config = Config()
|
||
vc = VC(config)
|
||
|
||
weight_root = os.getenv("weight_root")
|
||
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
||
index_root = os.getenv("index_root")
|
||
names = []
|
||
hubert_model = None
|
||
for name in os.listdir(weight_root):
|
||
if name.endswith(".pth"):
|
||
names.append(name)
|
||
index_paths = []
|
||
for root, dirs, files in os.walk(index_root, topdown=False):
|
||
for name in files:
|
||
if name.endswith(".index") and "trained" not in name:
|
||
index_paths.append("%s/%s" % (root, name))
|
||
|
||
|
||
app = gr.Blocks()
|
||
with app:
|
||
with gr.Tabs():
|
||
with gr.TabItem("在线demo"):
|
||
gr.Markdown(
|
||
value="""
|
||
RVC 在线demo
|
||
"""
|
||
)
|
||
sid = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
||
with gr.Column():
|
||
spk_item = gr.Slider(
|
||
minimum=0,
|
||
maximum=2333,
|
||
step=1,
|
||
label=i18n("请选择说话人id"),
|
||
value=0,
|
||
visible=False,
|
||
interactive=True,
|
||
)
|
||
sid.change(fn=vc.get_vc, inputs=[sid], outputs=[spk_item])
|
||
gr.Markdown(
|
||
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
||
)
|
||
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
|
||
vc_transform0 = gr.Number(label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0)
|
||
f0method0 = gr.Radio(
|
||
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"),
|
||
choices=["pm", "harvest", "crepe", "rmvpe"],
|
||
value="pm",
|
||
interactive=True,
|
||
)
|
||
filter_radius0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=7,
|
||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||
value=3,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
file_index1 = gr.Textbox(
|
||
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
||
value="",
|
||
interactive=False,
|
||
visible=False,
|
||
)
|
||
file_index2 = gr.Dropdown(
|
||
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
||
choices=sorted(index_paths),
|
||
interactive=True,
|
||
)
|
||
index_rate1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("检索特征占比"),
|
||
value=0.88,
|
||
interactive=True,
|
||
)
|
||
resample_sr0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=48000,
|
||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||
value=0,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
rms_mix_rate0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
||
value=1,
|
||
interactive=True,
|
||
)
|
||
protect0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=0.5,
|
||
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
|
||
value=0.33,
|
||
step=0.01,
|
||
interactive=True,
|
||
)
|
||
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
||
but0 = gr.Button(i18n("转换"), variant="primary")
|
||
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
||
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
||
but0.click(
|
||
vc.vc_single,
|
||
[
|
||
spk_item,
|
||
vc_input3,
|
||
vc_transform0,
|
||
f0_file,
|
||
f0method0,
|
||
file_index1,
|
||
file_index2,
|
||
# file_big_npy1,
|
||
index_rate1,
|
||
filter_radius0,
|
||
resample_sr0,
|
||
rms_mix_rate0,
|
||
protect0,
|
||
],
|
||
[vc_output1, vc_output2],
|
||
)
|
||
|
||
|
||
app.launch()
|