mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-19 21:00:11 +08:00
273 lines
7.5 KiB
Python
273 lines
7.5 KiB
Python
from scipy.io import wavfile
|
|
from fairseq import checkpoint_utils
|
|
from lib.audio import load_audio
|
|
from lib.infer_pack.models import (
|
|
SynthesizerTrnMs256NSFsid,
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
SynthesizerTrnMs768NSFsid,
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
)
|
|
from lib.train.vc_infer_pipeline import VC
|
|
from multiprocessing import cpu_count
|
|
import numpy as np
|
|
import torch
|
|
import sys
|
|
import glob
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import pdb
|
|
import torch
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
|
|
####
|
|
# USAGE
|
|
#
|
|
# In your Terminal or CMD or whatever
|
|
# python infer_cli.py [TRANSPOSE_VALUE] "[INPUT_PATH]" "[OUTPUT_PATH]" "[MODEL_PATH]" "[INDEX_FILE_PATH]" "[INFERENCE_DEVICE]" "[METHOD]"
|
|
|
|
using_cli = False
|
|
device = "cuda:0"
|
|
is_half = False
|
|
|
|
if len(sys.argv) > 0:
|
|
f0_up_key = int(sys.argv[1]) # transpose value
|
|
input_path = sys.argv[2]
|
|
output_path = sys.argv[3]
|
|
model_path = sys.argv[4]
|
|
file_index = sys.argv[5] # .index file
|
|
device = sys.argv[6]
|
|
f0_method = sys.argv[7] # pm or harvest or crepe
|
|
|
|
using_cli = True
|
|
|
|
# file_index2=sys.argv[8]
|
|
# index_rate=float(sys.argv[10]) #search feature ratio
|
|
# filter_radius=float(sys.argv[11]) #median filter
|
|
# resample_sr=float(sys.argv[12]) #resample audio in post processing
|
|
# rms_mix_rate=float(sys.argv[13]) #search feature
|
|
print(sys.argv)
|
|
|
|
|
|
class Config:
|
|
def __init__(self, device, is_half):
|
|
self.device = device
|
|
self.is_half = is_half
|
|
self.n_cpu = 0
|
|
self.gpu_name = None
|
|
self.gpu_mem = None
|
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
|
|
|
def device_config(self) -> tuple:
|
|
if torch.cuda.is_available() and device != "cpu":
|
|
i_device = int(self.device.split(":")[-1])
|
|
self.gpu_name = torch.cuda.get_device_name(i_device)
|
|
if (
|
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
|
or "P40" in self.gpu_name.upper()
|
|
or "1060" in self.gpu_name
|
|
or "1070" in self.gpu_name
|
|
or "1080" in self.gpu_name
|
|
):
|
|
print("16系/10系显卡和P40强制单精度")
|
|
self.is_half = False
|
|
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
|
with open(f"configs/{config_file}", "r") as f:
|
|
strr = f.read().replace("true", "false")
|
|
with open(f"configs/{config_file}", "w") as f:
|
|
f.write(strr)
|
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
|
strr = f.read().replace("3.7", "3.0")
|
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
|
f.write(strr)
|
|
else:
|
|
self.gpu_name = None
|
|
self.gpu_mem = int(
|
|
torch.cuda.get_device_properties(i_device).total_memory
|
|
/ 1024
|
|
/ 1024
|
|
/ 1024
|
|
+ 0.4
|
|
)
|
|
if self.gpu_mem <= 4:
|
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
|
strr = f.read().replace("3.7", "3.0")
|
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
|
f.write(strr)
|
|
elif torch.backends.mps.is_available():
|
|
print("没有发现支持的N卡, 使用MPS进行推理")
|
|
self.device = "mps"
|
|
else:
|
|
print("没有发现支持的N卡, 使用CPU进行推理")
|
|
self.device = "cpu"
|
|
self.is_half = False
|
|
|
|
if self.n_cpu == 0:
|
|
self.n_cpu = cpu_count()
|
|
|
|
if self.is_half:
|
|
# 6G显存配置
|
|
x_pad = 3
|
|
x_query = 10
|
|
x_center = 60
|
|
x_max = 65
|
|
else:
|
|
# 5G显存配置
|
|
x_pad = 1
|
|
x_query = 6
|
|
x_center = 38
|
|
x_max = 41
|
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4:
|
|
x_pad = 1
|
|
x_query = 5
|
|
x_center = 30
|
|
x_max = 32
|
|
|
|
return x_pad, x_query, x_center, x_max
|
|
|
|
|
|
config = Config(device, is_half)
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
|
|
hubert_model = None
|
|
|
|
|
|
def load_hubert():
|
|
global hubert_model
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(config.device)
|
|
if config.is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
hubert_model.eval()
|
|
|
|
|
|
def vc_single(
|
|
sid=0,
|
|
input_audio_path=None,
|
|
f0_up_key=0,
|
|
f0_file=None,
|
|
f0_method="pm",
|
|
file_index="", # .index file
|
|
file_index2="",
|
|
# file_big_npy,
|
|
index_rate=1.0,
|
|
filter_radius=3,
|
|
resample_sr=0,
|
|
rms_mix_rate=1.0,
|
|
model_path="",
|
|
output_path="",
|
|
protect=0.33,
|
|
):
|
|
global tgt_sr, net_g, vc, hubert_model, version
|
|
get_vc(model_path)
|
|
if input_audio_path is None:
|
|
return "You need to upload an audio file", None
|
|
|
|
f0_up_key = int(f0_up_key)
|
|
audio = load_audio(input_audio_path, 16000)
|
|
audio_max = np.abs(audio).max() / 0.95
|
|
|
|
if audio_max > 1:
|
|
audio /= audio_max
|
|
times = [0, 0, 0]
|
|
|
|
if hubert_model == None:
|
|
load_hubert()
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
|
file_index = (
|
|
(
|
|
file_index.strip(" ")
|
|
.strip('"')
|
|
.strip("\n")
|
|
.strip('"')
|
|
.strip(" ")
|
|
.replace("trained", "added")
|
|
)
|
|
if file_index != ""
|
|
else file_index2
|
|
)
|
|
|
|
audio_opt = vc.pipeline(
|
|
hubert_model,
|
|
net_g,
|
|
sid,
|
|
audio,
|
|
input_audio_path,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
# file_big_npy,
|
|
index_rate,
|
|
if_f0,
|
|
filter_radius,
|
|
tgt_sr,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
version,
|
|
f0_file=f0_file,
|
|
protect=protect,
|
|
)
|
|
wavfile.write(output_path, tgt_sr, audio_opt)
|
|
return "processed"
|
|
|
|
|
|
def get_vc(model_path):
|
|
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
|
|
print("loading pth %s" % model_path)
|
|
cpt = torch.load(model_path, map_location="cpu")
|
|
tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
if_f0 = cpt.get("f0", 1)
|
|
version = cpt.get("version", "v1")
|
|
if version == "v1":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif version == "v2":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
del net_g.enc_q
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
|
net_g.eval().to(device)
|
|
if is_half:
|
|
net_g = net_g.half()
|
|
else:
|
|
net_g = net_g.float()
|
|
vc = VC(tgt_sr, config)
|
|
n_spk = cpt["config"][-3]
|
|
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
|
|
|
|
|
if using_cli:
|
|
vc_single(
|
|
sid=0,
|
|
input_audio_path=input_path,
|
|
f0_up_key=f0_up_key,
|
|
f0_file=None,
|
|
f0_method=f0_method,
|
|
file_index=file_index,
|
|
file_index2="",
|
|
index_rate=1,
|
|
filter_radius=3,
|
|
resample_sr=0,
|
|
rms_mix_rate=0,
|
|
model_path=model_path,
|
|
output_path=output_path,
|
|
)
|