mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-18 04:10:08 +08:00
99 lines
3.4 KiB
Python
99 lines
3.4 KiB
Python
import numpy as np
|
|
import parselmouth
|
|
|
|
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
|
|
|
|
|
class PMF0Predictor(F0Predictor):
|
|
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
|
self.hop_length = hop_length
|
|
self.f0_min = f0_min
|
|
self.f0_max = f0_max
|
|
self.sampling_rate = sampling_rate
|
|
|
|
def interpolate_f0(self, f0):
|
|
"""
|
|
对F0进行插值处理
|
|
"""
|
|
|
|
data = np.reshape(f0, (f0.size, 1))
|
|
|
|
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
|
vuv_vector[data > 0.0] = 1.0
|
|
vuv_vector[data <= 0.0] = 0.0
|
|
|
|
ip_data = data
|
|
|
|
frame_number = data.size
|
|
last_value = 0.0
|
|
for i in range(frame_number):
|
|
if data[i] <= 0.0:
|
|
j = i + 1
|
|
for j in range(i + 1, frame_number):
|
|
if data[j] > 0.0:
|
|
break
|
|
if j < frame_number - 1:
|
|
if last_value > 0.0:
|
|
step = (data[j] - data[i - 1]) / float(j - i)
|
|
for k in range(i, j):
|
|
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
|
else:
|
|
for k in range(i, j):
|
|
ip_data[k] = data[j]
|
|
else:
|
|
for k in range(i, frame_number):
|
|
ip_data[k] = last_value
|
|
else:
|
|
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
|
last_value = data[i]
|
|
|
|
return ip_data[:, 0], vuv_vector[:, 0]
|
|
|
|
def compute_f0(self, wav, p_len=None):
|
|
x = wav
|
|
if p_len is None:
|
|
p_len = x.shape[0] // self.hop_length
|
|
else:
|
|
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
|
time_step = self.hop_length / self.sampling_rate * 1000
|
|
f0 = (
|
|
parselmouth.Sound(x, self.sampling_rate)
|
|
.to_pitch_ac(
|
|
time_step=time_step / 1000,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=self.f0_min,
|
|
pitch_ceiling=self.f0_max,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
|
f0, uv = self.interpolate_f0(f0)
|
|
return f0
|
|
|
|
def compute_f0_uv(self, wav, p_len=None):
|
|
x = wav
|
|
if p_len is None:
|
|
p_len = x.shape[0] // self.hop_length
|
|
else:
|
|
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
|
time_step = self.hop_length / self.sampling_rate * 1000
|
|
f0 = (
|
|
parselmouth.Sound(x, self.sampling_rate)
|
|
.to_pitch_ac(
|
|
time_step=time_step / 1000,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=self.f0_min,
|
|
pitch_ceiling=self.f0_max,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
|
f0, uv = self.interpolate_f0(f0)
|
|
return f0, uv
|