2023-04-22 09:45:48 +00:00

86 lines
2.8 KiB
Python

import os
import faiss
import ffmpeg
import numpy as np
def train_index(exp_dir1):
'''train and save faiss index
Args:
exp_dir1(string): Relative path where index is stored
'''
exp_dir = "%s/logs/%s" % (os.getcwd(), exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = "%s/3_feature256" % (exp_dir)
if os.path.exists(feature_dir) == False:
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
# use recommended parameter in https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
N = big_npy.shape[0]
dim = big_npy.shape[1]
if 4 * np.rint(np.sqrt(N)) * 30 > N:
n_ivf = N // 30
else:
n_ivf = -(-N // 256)
for x in range(4, 18, 2):
K = x * np.rint(np.sqrt(N)).astype(int)
if 30 * K <= N <= 256 * K:
n_ivf = K
break
index_string = "IVF%s,PQ%sx4fs,RFlat" % (n_ivf, -(-dim//2))
index_name = index_string.replace(",", "_")
infos = []
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(dim, index_string)
infos.append("training")
yield "\n".join(infos)
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_%s.index" % (exp_dir, index_name),
)
infos.append("adding")
yield "\n".join(infos)
index.add(big_npy)
faiss.write_index(
index,
"%s/added_%s.index" % (exp_dir, index_name),
)
infos.append("成功构建索引, added_%s.index" % (index_name))
yield "\n".join(infos)
def load_audio(file, sr):
try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
file = (
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
out, _ = (
ffmpeg.input(file, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except Exception as e:
raise RuntimeError(f"Failed to load audio: {e}")
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0