2025-03-20 22:49:54 +02:00

165 lines
5.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import requests
import soundfile as sf
import json
import numpy as np
import argparse
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--server-url",
type=str,
default="localhost:8000",
help="Address of the server",
)
parser.add_argument(
"--reference-audio",
type=str,
default="../../spark/example/prompt_audio.wav",
help="Path to a single audio file. It can't be specified at the same time with --manifest-dir",
)
parser.add_argument(
"--reference-text",
type=str,
default="吃燕窝就选燕之屋本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝营养更均衡本节目由豆本豆豆奶特约播出。",
help="",
)
parser.add_argument(
"--target-text",
type=str,
default="身临其境,换新体验。塑造开源语音合成新范式,让智能语音更自然。",
help="",
)
parser.add_argument(
"--model-name",
type=str,
default="spark_tts",
choices=[
"f5_tts", "spark_tts"
],
help="triton model_repo module name to request: transducer for k2, attention_rescoring for wenet offline, streaming_wenet for wenet streaming, infer_pipeline for paraformer large offline",
)
parser.add_argument(
"--output-audio",
type=str,
default="output.wav",
help="Path to save the output audio",
)
return parser.parse_args()
def prepare_request(
waveform,
reference_text,
target_text,
sample_rate=16000,
padding_duration: int = None,
audio_save_dir: str = "./",
):
assert len(waveform.shape) == 1, "waveform should be 1D"
lengths = np.array([[len(waveform)]], dtype=np.int32)
if padding_duration:
# padding to nearset 10 seconds
samples = np.zeros(
(
1,
padding_duration
* sample_rate
* ((int(duration) // padding_duration) + 1),
),
dtype=np.float32,
)
samples[0, : len(waveform)] = waveform
else:
samples = waveform
samples = samples.reshape(1, -1).astype(np.float32)
data = {
"inputs":[
{
"name": "reference_wav",
"shape": samples.shape,
"datatype": "FP32",
"data": samples.tolist()
},
{
"name": "reference_wav_len",
"shape": lengths.shape,
"datatype": "INT32",
"data": lengths.tolist(),
},
{
"name": "reference_text",
"shape": [1, 1],
"datatype": "BYTES",
"data": [reference_text]
},
{
"name": "target_text",
"shape": [1, 1],
"datatype": "BYTES",
"data": [target_text]
}
]
}
return data
if __name__ == "__main__":
args = get_args()
server_url = args.server_url
if not server_url.startswith(("http://", "https://")):
server_url = f"http://{server_url}"
url = f"{server_url}/v2/models/{args.model_name}/infer"
waveform, sr = sf.read(args.reference_audio)
assert sr == 16000, "sample rate hardcoded in server"
samples = np.array(waveform, dtype=np.float32)
data = prepare_request(samples, args.reference_text, args.target_text)
rsp = requests.post(
url,
headers={"Content-Type": "application/json"},
json=data,
verify=False,
params={"request_id": '0'}
)
result = rsp.json()
audio = result["outputs"][0]["data"]
audio = np.array(audio, dtype=np.float32)
sf.write(args.output_audio, audio, 16000, "PCM_16")