mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
164 lines
5.9 KiB
Python
164 lines
5.9 KiB
Python
# Copyright (c) 2025 SparkAudio
|
|
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import torch
|
|
import numpy as np
|
|
|
|
from pathlib import Path
|
|
from typing import Any, Dict, Tuple
|
|
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Model
|
|
|
|
from spark.sparktts.utils.file import load_config
|
|
from spark.sparktts.utils.audio import load_audio
|
|
from spark.sparktts.models.bicodec import BiCodec
|
|
|
|
|
|
class BiCodecTokenizer:
|
|
"""BiCodec tokenizer for handling audio input and tokenization."""
|
|
|
|
def __init__(self, model_dir: Path, device: torch.device = None, **kwargs):
|
|
super().__init__()
|
|
"""
|
|
Args:
|
|
model_dir: Path to the model directory.
|
|
device: Device to run the model on (default is GPU if available).
|
|
"""
|
|
self.device = device
|
|
self.model_dir = model_dir
|
|
self.config = load_config(f"{model_dir}/config.yaml")
|
|
self._initialize_model()
|
|
|
|
def _initialize_model(self):
|
|
"""Load and initialize the BiCodec model and Wav2Vec2 feature extractor."""
|
|
self.model = BiCodec.load_from_checkpoint(f"{self.model_dir}/BiCodec").to(
|
|
self.device
|
|
)
|
|
self.processor = Wav2Vec2FeatureExtractor.from_pretrained(
|
|
f"{self.model_dir}/wav2vec2-large-xlsr-53"
|
|
)
|
|
self.feature_extractor = Wav2Vec2Model.from_pretrained(
|
|
f"{self.model_dir}/wav2vec2-large-xlsr-53"
|
|
).to(self.device)
|
|
self.feature_extractor.config.output_hidden_states = True
|
|
|
|
def get_ref_clip(self, wav: np.ndarray) -> np.ndarray:
|
|
"""Get reference audio clip for speaker embedding."""
|
|
ref_segment_length = (
|
|
int(self.config["sample_rate"] * self.config["ref_segment_duration"])
|
|
// self.config["latent_hop_length"]
|
|
* self.config["latent_hop_length"]
|
|
)
|
|
wav_length = len(wav)
|
|
|
|
if ref_segment_length > wav_length:
|
|
# Repeat and truncate to handle insufficient length
|
|
wav = np.tile(wav, ref_segment_length // wav_length + 1)
|
|
|
|
return wav[:ref_segment_length]
|
|
|
|
def process_audio(self, wav_path: Path) -> Tuple[np.ndarray, torch.Tensor]:
|
|
"""load auido and get reference audio from wav path"""
|
|
wav = load_audio(
|
|
wav_path,
|
|
sampling_rate=self.config["sample_rate"],
|
|
volume_normalize=self.config["volume_normalize"],
|
|
)
|
|
|
|
wav_ref = self.get_ref_clip(wav)
|
|
|
|
wav_ref = torch.from_numpy(wav_ref).unsqueeze(0).float()
|
|
return wav, wav_ref
|
|
|
|
def extract_wav2vec2_features(self, wavs: torch.Tensor) -> torch.Tensor:
|
|
"""extract wav2vec2 features"""
|
|
inputs = self.processor(
|
|
wavs,
|
|
sampling_rate=16000,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
output_hidden_states=True,
|
|
).input_values
|
|
feat = self.feature_extractor(inputs.to(self.feature_extractor.device))
|
|
feats_mix = (
|
|
feat.hidden_states[11] + feat.hidden_states[14] + feat.hidden_states[16]
|
|
) / 3
|
|
|
|
return feats_mix
|
|
|
|
def tokenize_batch(self, batch: Dict[str, Any]) -> torch.Tensor:
|
|
"""tokenize the batch of audio
|
|
|
|
Args:
|
|
batch:
|
|
wavs (List[np.ndarray]): batch of audio
|
|
ref_wavs (torch.Tensor): reference audio. shape: (batch_size, seq_len)
|
|
|
|
Returns:
|
|
semantic_tokens: semantic tokens. shape: (batch_size, seq_len, latent_dim)
|
|
global_tokens: global tokens. shape: (batch_size, seq_len, global_dim)
|
|
"""
|
|
feats = self.extract_wav2vec2_features(batch["wav"])
|
|
batch["feat"] = feats
|
|
semantic_tokens, global_tokens = self.model.tokenize(batch)
|
|
|
|
return global_tokens, semantic_tokens
|
|
|
|
def tokenize(self, audio_path: str) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""tokenize the audio"""
|
|
wav, ref_wav = self.process_audio(audio_path)
|
|
feat = self.extract_wav2vec2_features(wav)
|
|
batch = {
|
|
"wav": torch.from_numpy(wav).unsqueeze(0).float().to(self.device),
|
|
"ref_wav": ref_wav.to(self.device),
|
|
"feat": feat.to(self.device),
|
|
}
|
|
semantic_tokens, global_tokens = self.model.tokenize(batch)
|
|
|
|
return global_tokens, semantic_tokens
|
|
|
|
def detokenize(
|
|
self, global_tokens: torch.Tensor, semantic_tokens: torch.Tensor
|
|
) -> np.array:
|
|
"""detokenize the tokens to waveform
|
|
|
|
Args:
|
|
global_tokens: global tokens. shape: (batch_size, global_dim)
|
|
semantic_tokens: semantic tokens. shape: (batch_size, latent_dim)
|
|
|
|
Returns:
|
|
wav_rec: waveform. shape: (batch_size, seq_len) for batch or (seq_len,) for single
|
|
"""
|
|
global_tokens = global_tokens.unsqueeze(1)
|
|
wav_rec = self.model.detokenize(semantic_tokens, global_tokens)
|
|
return wav_rec.detach().squeeze().cpu().numpy()
|
|
|
|
|
|
# test
|
|
if __name__ == "__main__":
|
|
import soundfile as sf
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
tokenizer = BiCodecTokenizer(
|
|
model_dir="spark/pretrained_models/Spark-TTS-0.5B",
|
|
device=device,
|
|
)
|
|
wav_path = "spark/example/prompt_audio.wav"
|
|
|
|
global_tokens, semantic_tokens = tokenizer.tokenize(wav_path)
|
|
|
|
wav_rec = tokenizer.detokenize(global_tokens.squeeze(0), semantic_tokens)
|
|
sf.write("spark/example/prompt_recon.wav", wav_rec, 16000)
|