mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-04 19:58:58 +08:00
248 lines
8.1 KiB
Python
248 lines
8.1 KiB
Python
# Copyright (c) 2025 SparkAudio
|
|
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
from typing import Dict, Any
|
|
from omegaconf import DictConfig
|
|
from safetensors.torch import load_file
|
|
|
|
from spark.sparktts.utils.file import load_config
|
|
from spark.sparktts.modules.speaker.speaker_encoder import SpeakerEncoder
|
|
from spark.sparktts.modules.encoder_decoder.feat_encoder import Encoder
|
|
from spark.sparktts.modules.encoder_decoder.feat_decoder import Decoder
|
|
from spark.sparktts.modules.encoder_decoder.wave_generator import WaveGenerator
|
|
from spark.sparktts.modules.vq.factorized_vector_quantize import FactorizedVectorQuantize
|
|
|
|
|
|
class BiCodec(nn.Module):
|
|
"""
|
|
BiCodec model for speech synthesis, incorporating a speaker encoder, feature encoder/decoder,
|
|
quantizer, and wave generator.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
mel_params: Dict[str, Any],
|
|
encoder: nn.Module,
|
|
decoder: nn.Module,
|
|
quantizer: nn.Module,
|
|
speaker_encoder: nn.Module,
|
|
prenet: nn.Module,
|
|
postnet: nn.Module,
|
|
**kwargs
|
|
) -> None:
|
|
"""
|
|
Initializes the BiCodec model with the required components.
|
|
|
|
Args:
|
|
mel_params (dict): Parameters for the mel-spectrogram transformer.
|
|
encoder (nn.Module): Encoder module.
|
|
decoder (nn.Module): Decoder module.
|
|
quantizer (nn.Module): Quantizer module.
|
|
speaker_encoder (nn.Module): Speaker encoder module.
|
|
prenet (nn.Module): Prenet network.
|
|
postnet (nn.Module): Postnet network.
|
|
"""
|
|
super().__init__()
|
|
self.encoder = encoder
|
|
self.decoder = decoder
|
|
self.quantizer = quantizer
|
|
self.speaker_encoder = speaker_encoder
|
|
self.prenet = prenet
|
|
self.postnet = postnet
|
|
self.init_mel_transformer(mel_params)
|
|
|
|
@classmethod
|
|
def load_from_checkpoint(cls, model_dir: Path, **kwargs) -> "BiCodec":
|
|
"""
|
|
Loads the model from a checkpoint.
|
|
|
|
Args:
|
|
model_dir (Path): Path to the model directory containing checkpoint and config.
|
|
|
|
Returns:
|
|
BiCodec: The initialized BiCodec model.
|
|
"""
|
|
ckpt_path = f'{model_dir}/model.safetensors'
|
|
config = load_config(f'{model_dir}/config.yaml')['audio_tokenizer']
|
|
mel_params = config["mel_params"]
|
|
encoder = Encoder(**config["encoder"])
|
|
quantizer = FactorizedVectorQuantize(**config["quantizer"])
|
|
prenet = Decoder(**config["prenet"])
|
|
postnet = Decoder(**config["postnet"])
|
|
decoder = WaveGenerator(**config["decoder"])
|
|
speaker_encoder = SpeakerEncoder(**config["speaker_encoder"])
|
|
|
|
model = cls(
|
|
mel_params=mel_params,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
quantizer=quantizer,
|
|
speaker_encoder=speaker_encoder,
|
|
prenet=prenet,
|
|
postnet=postnet,
|
|
)
|
|
|
|
state_dict = load_file(ckpt_path)
|
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
|
|
|
for key in missing_keys:
|
|
print(f"Missing tensor: {key}")
|
|
for key in unexpected_keys:
|
|
print(f"Unexpected tensor: {key}")
|
|
|
|
model.eval()
|
|
model.remove_weight_norm()
|
|
|
|
return model
|
|
|
|
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Performs a forward pass through the model.
|
|
|
|
Args:
|
|
batch (dict): A dictionary containing features, reference waveform, and target waveform.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the reconstruction, features, and other metrics.
|
|
"""
|
|
feat = batch["feat"]
|
|
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
|
|
|
|
z = self.encoder(feat.transpose(1, 2))
|
|
vq_outputs = self.quantizer(z)
|
|
|
|
x_vector, d_vector = self.speaker_encoder(mel.transpose(1, 2))
|
|
|
|
conditions = d_vector
|
|
with_speaker_loss = False
|
|
|
|
x = self.prenet(vq_outputs["z_q"], conditions)
|
|
pred_feat = self.postnet(x)
|
|
x = x + conditions.unsqueeze(-1)
|
|
wav_recon = self.decoder(x)
|
|
|
|
return {
|
|
"vq_loss": vq_outputs["vq_loss"],
|
|
"perplexity": vq_outputs["perplexity"],
|
|
"cluster_size": vq_outputs["active_num"],
|
|
"recons": wav_recon,
|
|
"pred_feat": pred_feat,
|
|
"x_vector": x_vector,
|
|
"d_vector": d_vector,
|
|
"audios": batch["wav"].unsqueeze(1),
|
|
"with_speaker_loss": with_speaker_loss,
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def tokenize(self, batch: Dict[str, Any]):
|
|
"""
|
|
Tokenizes the input audio into semantic and global tokens.
|
|
|
|
Args:
|
|
batch (dict): The input audio features and reference waveform.
|
|
|
|
Returns:
|
|
tuple: Semantic tokens and global tokens.
|
|
"""
|
|
feat = batch["feat"]
|
|
mel = self.mel_transformer(batch["ref_wav"]).squeeze(1)
|
|
|
|
z = self.encoder(feat.transpose(1, 2))
|
|
semantic_tokens = self.quantizer.tokenize(z)
|
|
global_tokens = self.speaker_encoder.tokenize(mel.transpose(1, 2))
|
|
|
|
return semantic_tokens, global_tokens
|
|
|
|
@torch.no_grad()
|
|
def detokenize(self, semantic_tokens, global_tokens):
|
|
"""
|
|
Detokenizes the semantic and global tokens into a waveform.
|
|
|
|
Args:
|
|
semantic_tokens (tensor): Semantic tokens.
|
|
global_tokens (tensor): Global tokens.
|
|
|
|
Returns:
|
|
tensor: Reconstructed waveform.
|
|
"""
|
|
z_q = self.quantizer.detokenize(semantic_tokens)
|
|
d_vector = self.speaker_encoder.detokenize(global_tokens)
|
|
x = self.prenet(z_q, d_vector)
|
|
x = x + d_vector.unsqueeze(-1)
|
|
wav_recon = self.decoder(x)
|
|
|
|
return wav_recon
|
|
|
|
def init_mel_transformer(self, config: Dict[str, Any]):
|
|
"""
|
|
Initializes the MelSpectrogram transformer based on the provided configuration.
|
|
|
|
Args:
|
|
config (dict): Configuration parameters for MelSpectrogram.
|
|
"""
|
|
import torchaudio.transforms as TT
|
|
|
|
self.mel_transformer = TT.MelSpectrogram(
|
|
config["sample_rate"],
|
|
config["n_fft"],
|
|
config["win_length"],
|
|
config["hop_length"],
|
|
config["mel_fmin"],
|
|
config["mel_fmax"],
|
|
n_mels=config["num_mels"],
|
|
power=1,
|
|
norm="slaney",
|
|
mel_scale="slaney",
|
|
)
|
|
|
|
def remove_weight_norm(self):
|
|
"""Removes weight normalization from all layers."""
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError:
|
|
pass # The module didn't have weight norm
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
# Test the model
|
|
if __name__ == "__main__":
|
|
|
|
config = load_config("pretrained_models/SparkTTS-0.5B/BiCodec/config.yaml")
|
|
model = BiCodec.load_from_checkpoint(
|
|
model_dir="pretrained_models/SparkTTS-0.5B/BiCodec",
|
|
)
|
|
|
|
# Generate random inputs for testing
|
|
duration = 0.96
|
|
x = torch.randn(20, 1, int(duration * 16000))
|
|
feat = torch.randn(20, int(duration * 50), 1024)
|
|
inputs = {"feat": feat, "wav": x, "ref_wav": x}
|
|
|
|
# Forward pass
|
|
outputs = model(inputs)
|
|
semantic_tokens, global_tokens = model.tokenize(inputs)
|
|
wav_recon = model.detokenize(semantic_tokens, global_tokens)
|
|
|
|
# Verify if the reconstruction matches
|
|
if torch.allclose(outputs["recons"].detach(), wav_recon):
|
|
print("Test successful")
|
|
else:
|
|
print("Test failed")
|