mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
74 lines
2.1 KiB
Python
74 lines
2.1 KiB
Python
# Copyright (c) 2025 SparkAudio
|
|
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.utils import weight_norm
|
|
|
|
|
|
def WNConv1d(*args, **kwargs):
|
|
return weight_norm(nn.Conv1d(*args, **kwargs))
|
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs):
|
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
|
|
|
|
|
# Scripting this brings model speed up 1.4x
|
|
@torch.jit.script
|
|
def snake(x, alpha):
|
|
shape = x.shape
|
|
x = x.reshape(shape[0], shape[1], -1)
|
|
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
|
x = x.reshape(shape)
|
|
return x
|
|
|
|
|
|
class Snake1d(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
|
|
|
def forward(self, x):
|
|
return snake(x, self.alpha)
|
|
|
|
|
|
class ResidualUnit(nn.Module):
|
|
def __init__(self, dim: int = 16, dilation: int = 1):
|
|
super().__init__()
|
|
pad = ((7 - 1) * dilation) // 2
|
|
self.block = nn.Sequential(
|
|
Snake1d(dim),
|
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
|
Snake1d(dim),
|
|
WNConv1d(dim, dim, kernel_size=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
y = self.block(x)
|
|
pad = (x.shape[-1] - y.shape[-1]) // 2
|
|
if pad > 0:
|
|
x = x[..., pad:-pad]
|
|
return x + y
|
|
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, nn.Conv1d):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|