mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
374 lines
13 KiB
Python
374 lines
13 KiB
Python
# Copyright (c) 2025 SparkAudio
|
|
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from typing import Tuple
|
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
|
|
|
from typing import Optional
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
intermediate_dim (int): Dimensionality of the intermediate layer.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional LayerNorm. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
layer_scale_init_value: float,
|
|
condition_dim: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv1d(
|
|
dim, dim, kernel_size=7, padding=3, groups=dim
|
|
) # depthwise conv
|
|
self.adanorm = condition_dim is not None
|
|
if condition_dim:
|
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(
|
|
dim, intermediate_dim
|
|
) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
self.gamma = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
|
) -> torch.Tensor:
|
|
residual = x
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
|
if self.adanorm:
|
|
assert cond_embedding_id is not None
|
|
x = self.norm(x, cond_embedding_id)
|
|
else:
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.pwconv2(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
|
|
|
x = residual + x
|
|
return x
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
"""
|
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
|
|
|
Args:
|
|
condition_dim (int): Dimension of the condition.
|
|
embedding_dim (int): Dimension of the embeddings.
|
|
"""
|
|
|
|
def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.dim = embedding_dim
|
|
self.scale = nn.Linear(condition_dim, embedding_dim)
|
|
self.shift = nn.Linear(condition_dim, embedding_dim)
|
|
torch.nn.init.ones_(self.scale.weight)
|
|
torch.nn.init.zeros_(self.shift.weight)
|
|
|
|
def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor:
|
|
scale = self.scale(cond_embedding)
|
|
shift = self.shift(cond_embedding)
|
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
|
x = x * scale.unsqueeze(1) + shift.unsqueeze(1)
|
|
return x
|
|
|
|
|
|
class ResBlock1(nn.Module):
|
|
"""
|
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
|
but without upsampling layers.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
|
Defaults to (1, 3, 5).
|
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
|
Defaults to 0.1.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
kernel_size: int = 3,
|
|
dilation: Tuple[int, int, int] = (1, 3, 5),
|
|
lrelu_slope: float = 0.1,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
):
|
|
super().__init__()
|
|
self.lrelu_slope = lrelu_slope
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=self.get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=self.get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=self.get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.gamma = nn.ParameterList(
|
|
[
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
|
xt = c1(xt)
|
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
|
xt = c2(xt)
|
|
if gamma is not None:
|
|
xt = gamma * xt
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
@staticmethod
|
|
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
class Backbone(nn.Module):
|
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
|
C denotes output features, and L is the sequence length.
|
|
|
|
Returns:
|
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
|
and H denotes the model dimension.
|
|
"""
|
|
raise NotImplementedError("Subclasses must implement the forward method.")
|
|
|
|
|
|
class VocosBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
|
num_layers (int): Number of ConvNeXtBlock layers.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional model. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels: int,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
num_layers: int,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
condition_dim: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
|
self.adanorm = condition_dim is not None
|
|
if condition_dim:
|
|
self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
|
self.convnext = nn.ModuleList(
|
|
[
|
|
ConvNeXtBlock(
|
|
dim=dim,
|
|
intermediate_dim=intermediate_dim,
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
condition_dim=condition_dim,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor:
|
|
x = self.embed(x)
|
|
if self.adanorm:
|
|
assert condition is not None
|
|
x = self.norm(x.transpose(1, 2), condition)
|
|
else:
|
|
x = self.norm(x.transpose(1, 2))
|
|
x = x.transpose(1, 2)
|
|
for conv_block in self.convnext:
|
|
x = conv_block(x, condition)
|
|
x = self.final_layer_norm(x.transpose(1, 2))
|
|
return x
|
|
|
|
|
|
class VocosResNetBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ResBlocks.
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
num_blocks (int): Number of ResBlock1 blocks.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels,
|
|
dim,
|
|
num_blocks,
|
|
layer_scale_init_value=None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = weight_norm(
|
|
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
|
|
)
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
|
self.resnet = nn.Sequential(
|
|
*[
|
|
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
|
|
for _ in range(num_blocks)
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
x = self.embed(x)
|
|
x = self.resnet(x)
|
|
x = x.transpose(1, 2)
|
|
return x
|